Financial Derivatives Toolbox ${ }^{\text {TM }} 5$ User's Guide

MATLAB

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Financial Derivatives Toolbox ${ }^{\text {TM }}$ User's Guide

© COPYRIGHT 2000-2009 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

June 2000
September 2001
April 2004
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009

First printing Second printing Third printing Fourth printing Online only Online only Fifth printing Sixth printing Online only Online only Online only Online only

New for Version 1.0 (Release 12)
Revised for Version 2.0 (Release 12.1)
Revised for Version 3.0 (Release 14)
Revised for Version 4.0 (Release 14SP3)
Revised for Version 4.0.1 (Release 2006a)
Revised for Version 4.1 (Release 2006b)
Revised for Version 5.0 (Release 2007a)
Revised for Version 5.1 (Release 2007b)
Revised for Version 5.2 (Release 2008a)
Revised for Version 5.3 (Release 2008b)
Revised for Version 5.4 (Release 2009a)
Revised for Version 5.5 (Release 2009b)

Getting Started

1

Product Overview 1-2
Introduction 1-2
Interest-Rate-Based Derivatives 1-2
Equity-Based Derivatives 1-3
Expected Background 1-4
Portfolio Creation 1-5
Introduction 1-5
Interest-Rate-Based Derivatives 1-5
Equity Derivatives 1-7
Adding Instruments to an Existing Portfolio 1-7
Portfolio Management 1-9
Instrument Constructors 1-9
Creating New Instruments or Properties 1-10
Searching or Subsetting a Portfolio 1-12
Interest-Rate Derivatives
2
Introduction 2-2
Financial Instruments 2-2
Interest-Rate Modeling 2-3
Rate and Price Trees 2-5
Viewing Rate or Price Movement with This Toolbox 2-6
Hedging 2-7
Understanding the Interest-Rate Term Structure 2-9
Introduction 2-9
Interest Rates Versus Discount Factors 2-9
Interest-Rate Term Conversions 2-14
Functions That Model the Interest-Rate Term Structure 2-18
Computing Prices and Sensitivities Using the Interest-Rate Term Structure 2-24
Introduction 2-24
Computing Instrument Prices 2-25
Computing Instrument Sensitivities 2-27
Understanding Interest-Rate Models 2-29
Introduction 2-29
Building a Tree of Forward Rates 2-30
Specifying the Volatility Model (VolSpec) 2-32
Specifying the Interest-Rate Term Structure (RateSpec) 2-35
Calibrating the Hull-White Model Using Market Data 2-36
Specifying the Time Structure (TimeSpec) 2-41
Examples of Tree Creation 2-42
Examining Trees 2-43
Computing Prices and Sensitivities Using Interest-Rate Models 2-55
Introduction 2-55
Computing Instrument Prices 2-55
Computing Instrument Sensitivities 2-64
Interest Rate Derivatives Using Closed Form Solutions 2-67
Pricing Caps and Floors Using the Black Option Model 2-67
Graphical Representation of Trees 2-68
Introduction 2-68
Observing Interest Rates 2-68
Observing Instrument Prices 2-72
Understanding Equity Trees 3-2
Introduction 3-2
Building Equity Binary Trees 3-3
Building Implied Trinomial Trees 3-8
Examining Equity Trees 3-16
Differences Between CRR and EQP Tree Structures 3-20
Understanding Equity Exotic Options 3-22
Introduction 3-22
Asian Option 3-22
Barrier Option 3-23
Basket Option 3-25
Compound Option 3-26
Lookback Option 3-27
Digital Option 3-28
Rainbow Option 3-29
Bermuda Put and Call Schedule 3-30
Computing Prices and Sensitivities for Equity Derivatives Using Trees 3-31
Computing Instrument Prices 3-31
Computing Prices Using CRR 3-33
Computing Prices Using EQP 3-35
Computing Prices Using ITT 3-37
Examining Output from the Pricing Functions 3-39
Computing Instrument Sensitivities 3-43
Graphical Representation of CRR, EQP, and ITT Trees 3-47
Equity Derivatives Using Closed-Form Solutions 3-49
Introduction 3-49
Computing Prices and Sensitivities Using the Black-Scholes Model 3-53
Computing Prices and Sensitivities Using the Black Model 3-55
Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model 3-56
Computing Prices and Sensitivities Using the Bjerksund-Stensland Model 3-57
Hedging 4-2
Hedging Functions 4-3
Introduction 4-3
Hedging with hedgeopt 4-4
Self-Financing Hedges with hedgeslf 4-12
Specifying Constraints with ConSet 4-16
Introduction 4-16
Setting Constraints 4-16
Portfolio Rebalancing 4-19
Hedging with Constrained Portfolios 4-21
Overview 4-21
Example: Fully Hedged Portfolio 4-21
Example: Minimize Portfolio Sensitivities 4-24
Example: Under-Determined System 4-25
Example: Portfolio Constraints with hedgeslf 4-27
Function Reference
5
Portfolio Hedge Allocation 5-3
Interest-Rate Term Structure 5-3
Heath-Jarrow-Morton Trees 5-3
Black-Derman-Toy Trees 5-4
Black-Karasinski Trees 5-4
Cox-Ross-Rubinstein Trees 5-5
Equal Probabilities Binomial Trees 5-5
Hull-White Trees 5-6
Implied Trinomial Tree 5-6
Heath-Jarrow-Morton Utilities 5-7
Black-Derman-Toy Utilities 5-7
Black-Karasinski Utilities 5-8
Cox-Ross-Rubinstein Utilities 5-9
Equal Probabilities Tree Utilities 5-10
Implied Trinomial Tree Utilities 5-10
Hull-White Utilities 5-11
Tree Manipulation 5-11
Derivatives Pricing Options 5-12
Pricing and Sensitivity Using Black-Scholes Option Pricing Model 5-12
Pricing and Sensitivity Using Black Option Pricing Model 5-13
Pricing and Sensitivity Using Longstaff-Schwartz Option Pricing Model 5-14
Pricing and Sensitivity Using Nengjiu Ju Approximation Model 5-14
Pricing and Sensitivity Using Role-Geske-Whaley Option Pricing Model 5-15
Pricing and Sensitivity Using Bjerksund-Stensland Option Pricing Model 5-15
Pricing and Sensitivity Using Stulz Option Pricing Model 5-16
Instrument Portfolio Handling 5-16
Financial Object Structures 5-18
Interest Term Structure 5-18
Date 5-18
Graphical Display 5-19
Functions - Alphabetical List
6
Derivatives Pricing Options
A
Pricing Options Structure A-2
Introduction A-2
Default Structure A-2
Customizing the Structure A-5

Bibliography

B
Black-Derman-Toy (BDT) Modeling B-2
Heath-Jarrow-Morton (HJM) Modeling B-3
Hull-White (HW) and Black-Karasinski (BK) Modeling B-4
Cox-Ross-Rubinstein (CRR) Modeling B-5
Implied Trinomial Tree (ITT) Modeling B-6
Equal Probabilities Tree (EQP) Modeling B-7
Closed-Form Solutions Modeling B-8
Financial Derivatives B-9
Examples
C
Instrument Portfolio Examples C-2
Interest Rate Environment Examples C-2
HJM Examples C-2
Volatility Modeling C-2
BDT Examples C-2
Rate Specification Creation C-3
Time Specification C-3
Sensitivity C-3
Treeviewer Examples C-3
Creating Equity Derivatives C-3
Pricing Equity Derivatives C-4
Closed-Form Solution Examples C-4
Hedging Examples C-4
Hedging with Constrained Portfolios C-4
Glossary
Index

Getting Started

- "Product Overview" on page 1-2
- "Expected Background" on page 1-4
- "Portfolio Creation" on page 1-5
- "Portfolio Management" on page 1-9

Product Overview

In this section...
"Introduction" on page 1-2
"Interest-Rate-Based Derivatives" on page 1-2
"Equity-Based Derivatives" on page 1-3

Introduction

Financial Derivatives Toolbox ${ }^{\text {TM }}$ software provides components for analyzing individual derivative instruments and portfolios containing several types of interest-rate-based and equity-based financial instruments.

Interest-Rate-Based Derivatives

The toolbox provides functionality that supports the creation and management of these interest-rate-based instruments:

- Bonds
- Bond options (puts and calls)
- Caps
- Fixed-rate notes
- Floating-rate notes
- Floors
- Swaps
- Swaption
- Callable and Puttable bonds

Additionally, the toolbox provides functions to create arbitrary cash flow instruments. The toolbox provides pricing and sensitivity routines for these instruments. See "Computing Prices and Sensitivities Using the Interest-Rate Term Structure" on page 2-24 or "Computing Prices and Sensitivities Using Interest-Rate Models" on page 2-55 for information.

Equity-Based Derivatives

The toolbox also provides functions to create and manage various equity-based derivatives, including the following:

- Asian options
- Barrier options
- Compound options
- Lookback options
- Vanilla stock options (put and call options)

The toolbox also provides pricing and sensitivity routines for these instruments. (See "Computing Prices and Sensitivities for Equity Derivatives Using Trees" on page 3-31.)

Expected Background

In general, this guide assumes experience working with financial derivatives and some familiarity with the underlying models.

In designing Financial Derivatives Toolbox documentation, we assume your title is similar to one of these:

- Analyst, quantitative analyst
- Risk manager
- Portfolio manager
- Fund manager, asset manager
- Financial engineer
- Trader
- Student, professor, or other academic

We also assume your background, education, training, and responsibilities match some aspects of this profile:

- Finance, economics, perhaps accounting
- Engineering, mathematics, physics, other quantitative sciences
- Bachelor's degree minimum; MS or MBA likely; Ph.D. perhaps; CFA
- Comfortable with probability theory, statistics, and algebra
- Understand linear or matrix algebra, calculus, and differential equations
- Previously done traditional programming (C, Fortran, etc.)
- Responsible for instruments or analyses involving large sums of money
- Perhaps new to MATLAB

Portfolio Creation

```
In this section...
"Introduction" on page 1-5
"Interest-Rate-Based Derivatives" on page 1-5
"Equity Derivatives" on page 1-7
"Adding Instruments to an Existing Portfolio" on page 1-7
```


Introduction

The instadd function creates a set of instruments (portfolio) or adds instruments to an existing instrument collection. The TypeString argument specifies the type of the investment instrument. For interest-rate-based derivatives, the types are: Bond, OptBond, CashFlow, Fixed, Float, Cap, Floor, and Swap. For equity derivatives, the types are Asian, Barrier, Compound, Lookback, and OptStock.

The input arguments following TypeString are specific to the type of investment instrument. Thus, the TypeString argument determines how the remainder of the input arguments is interpreted. For example, instadd with the type string Bond creates a portfolio of bond instruments.

```
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)
```


Interest-Rate-Based Derivatives

In addition to the bond instrument already described, the toolbox can create portfolios containing the following set of interest-rate-based derivatives:

- Bond option

```
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt)
```

- Arbitrary cash flow instrument

```
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)
```

- Fixed-rate note instrument

```
InstSet = instadd('Fixed', CouponRate, Settle, Maturity,
FixedReset, Basis, Principal)
```

- Floating-rate note instrument

```
InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset,
Basis, Principal)
```

- Cap instrument

```
InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset,
Basis, Principal)
```

- Floor instrument

```
InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset,
Basis, Principal)
```

- Swap instrument

```
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType)
```

- Swaption instrument

```
InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates, Spread,...
Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)
```

- Bond with embedded option instrument

```
InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity, OptSpec, Strike,
ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period', Period,'Basis', Basis,
'EndMonthRule', EndMonthRule,'Face',Face,'IssueDate', IssueDate, 'FirstCouponDate',
FirstCouponDate, 'LastCouponDate', LastCouponDate,'StartDate', StartDate)
```


Equity Derivatives

The toolbox can create portfolios containing the following set of equity derivatives:

- Asian instrument

```
InstSet = instadd('Asian', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
```

- Barrier instrument

```
InstSet = instadd('Barrier', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierType, Barrier, Rebate)
```

- Compound instrument

```
InstSet = instadd('Compound', UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt,COptSpec, CStrike, CSettle,
CExerciseDates, CAmericanOpt)
```

- Lookback instrument

```
InstSet = instadd('Lookback', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt)
```

- Stock option instrument

InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)

Adding Instruments to an Existing Portfolio

To use the instadd function to add additional instruments to an existing instrument portfolio, provide the name of an existing portfolio as the first argument to the instadd function.

Consider, for example, a portfolio containing two cap instruments only:

```
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';
```

```
Port_1 = instadd('Cap', Strike, Settle, Maturity);
```

These commands create a portfolio containing two cap instruments with the same settlement and maturity dates, but with different strikes. In general, the input arguments describing an instrument can be either a scalar, or a number of instruments (NumInst)-by-1 vector in which each element corresponds to an instrument. Using a scalar assigns the same value to all instruments passed in the call to instadd.

Use the instdisp command to display the contents of the instrument set:

```
instdisp(Port_1)
\begin{tabular}{lllllll} 
Index & Type & Strike Settle & Maturity & CapReset Basis Principal \\
1 & Cap & 0.06 & \(08-\) Feb-2000 & 15-Jan-2003 & 1 & 0 \\
\hline 2 & Cap & 0.07 & \(08-\) Feb-2000 & 15-Jan-2003 & 1 & 0 \\
\hline
\end{tabular}
```

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and the same settlement and maturity dates as the cap instruments.

```
CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);
```

Use instdisp again to see the resulting instrument set:

```
instdisp(Port_1)
\begin{tabular}{llllllll} 
Index & Type Strike Settle & Maturity & CapReset Basis Principal \\
1 & Cap & 0.06 & \(08-\) Feb-2000 & \(15-\) Jan-2003 & 1 & 0 & 100 \\
2 & Cap & 0.07 & \(08-\) Feb-2000 & \(15-\) Jan-2003 & 1 & 0 & 100
\end{tabular}
Index Type CouponRate Settle Maturity Period Basis ..Face
3 Bond 0.04 08-Feb-2000 15-Jan-2003 2 0 0 100
```


Portfolio Management

```
In this section...
"Instrument Constructors" on page 1-9
"Creating New Instruments or Properties" on page 1-10
"Searching or Subsetting a Portfolio" on page 1-12
```


Instrument Constructors

The toolbox provides constructors for the most common financial instruments. A constructor is a function that builds a structure dedicated to a certain type of object; in this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

Instrument	Constructor
Asian option	instasian
Barrier option	instbarrier
Bond	instbond
Bond option	instoptbnd
Arbitrary cash flow	instcf
Compound option	instcompound
Fixed-rate note	instfixed
Floating-rate note	instfloat
Cap	instcap
Floor	instfloor
Lookback option	instlookback
Stock option	instoptstock
Swap	instswap
Swaption	instswaption

Each instrument has parameters (fields) that describe the instrument. The toolbox functions let you do the following:

- Create an instrument or portfolio of instruments.
- Enumerate stored instrument types and information fields.
- Enumerate instrument field data.
- Search and select instruments.

The instrument structure consists of various fields according to instrument type. A field is an element of data associated with the instrument. For example, a bond instrument contains the fields CouponRate, Settle, Maturity, and so on. Additionally, each instrument has a field that identifies the investment type (bond, cap, floor, and so on).

In reality, the set of parameters for each instrument is not fixed. You have the ability to add additional parameters. These additional fields are ignored by the toolbox functions. They may be used to attach additional information to each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which, in general, means that the functions using the instrument set (such as intenvprice or hjmprice) will use default values. At the time of pricing, an error occurs if any of the required fields is missing, such as Strike in a cap or CouponRate in a bond.

Creating New Instruments or Properties

Use the instaddfield function to create a kind of instrument or to add new properties to the instruments in an existing instrument collection.

To create a kind of instrument with instaddfield, you must specify three arguments:

- Type
- FieldName
- Data

Type defines the type of the new instrument, for example, Future. FieldName names the fields uniquely associated with the new type of instrument. Data contains the data for the fields of the new instrument.

An optional fourth argument is ClassList. ClassList specifies the data types of the contents of each unique field for the new instrument.

Here are the syntaxes to create a kind of instrument using instaddfield:

```
InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,...
'Type', TypeString)
InstSet = instaddfield('FieldName', FieldList, 'FieldClass',...
ClassList, 'Data' , DataList, 'Type', TypeString)
```

To add new instruments to an existing set, use:

```
InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList,...
'Data', DataList, 'Type', TypeString)
```

As an example, consider a futures contract with a delivery date of July 15, 2000, and a quoted price of $\$ 104.40$. Since Financial Derivatives Toolbox software does not directly support this instrument, you must create it using the function instaddfield. Use these parameters to create instruments:

- Type: Future
- Field names: Delivery and Price
- Data: Delivery is July 15,2000 , and price is $\$ 104.40$.

Enter the data into MATLAB ${ }^{\circledR}$ software:

```
Type = 'Future';
FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};
```

Finally, create the portfolio with a single instrument:

```
Port = instaddfield('Type', Type, 'FieldName', FieldName,...
'Data', Data);
```

Now use the function instdisp to examine the resulting single-instrument portfolio:

```
instdisp(Port)
Index Type Delivery Price
1 Future 15-Jul-2000 104.4
```

Because your portfolio Port has the same structure as those created using the function instadd, you can combine portfolios created using instadd with portfolios created using instaddfield. For example, you can now add two cap instruments to Port with instadd.

```
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';
Port = instadd(Port, 'Cap', Strike, Settle, Maturity);
```

View the resulting portfolio using instdisp.

```
instdisp(Port)
Index Type Delivery Price
1 Future 15-Jul-2000 104.4
\begin{tabular}{lllllll} 
Index & Type & Strike Settle & Maturity & CapReset & \multicolumn{2}{l}{ Basis Pricipal } \\
2 & Cap & 0.06 & 08-Feb-2000 & 15-Jan-2003 & 1 & 0 \\
3 & Cap & 0.07 & 08-Feb-2000 & 15-Jan-2003 & 1 & 100 \\
& & & & 0 & 100
\end{tabular}
```


Searching or Subsetting a Portfolio

Financial Derivatives Toolbox software provides functions that enable you to:

- Find specific instruments within a portfolio.
- Create a subset portfolio consisting of instruments selected from a larger portfolio.

The instfind function finds instruments with a specific parameter value; it returns an instrument index (position) in a large instrument set. The
instselect function, on the other hand, subsets a large instrument set into a portfolio of instruments with designated parameter values; it returns an instrument set (portfolio) rather than an index.

instfind

The general syntax for instfind is

```
IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',...
DataList, 'Index', IndexSet, 'Type', TypeList)
```

InstSet is the instrument set to search. Within InstSet instruments categorized by type, each type can have different data fields. The stored data field is a row vector or string for each instrument.

The FieldList, DataList, and TypeList arguments indicate values to search for in the FieldName, Data, and Type data fields of the instrument set. FieldList is a cell array of field name(s) specific to the instruments. DataList is a cell array or matrix of acceptable values for the parameter(s) specified in FieldList. FieldName and Data (consequently, FieldList and DataList) parameters must appear together or not at all.

IndexSet is a vector of integer index(es) designating positions of instruments in the instrument set to check for matches; the default is all indices available in the instrument set. TypeList is a string or cell array of strings restricting instruments to match one of the TypeList types; the default is all types in the instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria. Instruments are returned in IndexMatch if all the FieldName, Data, Index, and Type conditions are met. An instrument meets an individual field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName.
instfind Examples. The examples use the provided MAT-file deriv.mat.
The MAT-file contains an instrument set, HJMInstSet, that contains eight instruments of seven types.

Find all instruments with a maturity date of January 01, 2003.

```
Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')
Mat2003 =
```

1
4
5
8

Find all cap and floor instruments with a maturity date of January 01, 2004.

```
CapFloor = instfind(HJMInstSet,...
'FieldName','Maturity','Data','01-Jan-2004', 'Type',...
{'Cap';'Floor'})
CapFloor =
```

6
7

Find all instruments where the portfolio is long or short a quantity of 50 .

```
Pos50 = instfind(HJMInstSet,'FieldName',...
'Quantity','Data',{'50';'-50'})
Pos50 =
```

 2
 3

instselect

The syntax for instselect is the same syntax as for instfind. instselect returns a full portfolio instead of indexes into the original portfolio. Compare the values returned by both functions by calling them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a maturity date of January 01, 2003.

```
Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')
Mat2003 =
```

 1
 4
 5
 8
 Now use the same instrument set as a starting point, but execute the instselect function instead, to produce a new instrument set matching the identical search criteria.

```
Select2003 = ...
instselect(HJMInstSet,'FieldName','Maturity','Data',...
'01-Jan-2003')
instdisp(Select2003)
```


instselect Examples. These examples use the portfolio ExampleInst provided with the MAT-file InstSetExamples.mat.
load InstSetExamples.mat instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option 100	9.2	Call	0	
3	Option 105	6.8	Call	1000	
Index	Type	Delivery	F	Contracts	
4	Futures	01 -Jul-1999	104.4	-1000	

Index	Type	Strike	Price	Opt	Contracts
5	Option	105	7.4	Put	-1000
6	Option	95	2.9	Put	0

```
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

The instrument set contains 3 instrument types: Option, Futures, and TBill. Use instselect to make a new instrument set containing only options struck at 95 . In other words, select all instruments containing the field Strike and with the data value for that field equal to 95 .

```
InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95);
instdisp(InstSet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0
```

You can use all the various forms of instselect and instfind to locate specific instruments within this instrument set.

Interest-Rate Derivatives

- "Introduction" on page 2-2
- "Understanding the Interest-Rate Term Structure" on page 2-9
- "Computing Prices and Sensitivities Using the Interest-Rate Term Structure" on page 2-24
- "Understanding Interest-Rate Models" on page 2-29
- "Computing Prices and Sensitivities Using Interest-Rate Models" on page 2-55
- "Interest Rate Derivatives Using Closed Form Solutions" on page 2-67
- "Graphical Representation of Trees" on page 2-68

Introduction

In this section...
"Financial Instruments" on page 2-2
"Interest-Rate Modeling" on page 2-3
"Rate and Price Trees" on page 2-5
"Viewing Rate or Price Movement with This Toolbox" on page 2-6
"Hedging" on page 2-7

Financial Instruments

Financial Derivatives Toolbox software extends the capabilities of Financial Toolbox ${ }^{\text {TM }}$ software in the areas of fixed-income derivatives and of securities contingent on interest rates. The toolbox provides components for analyzing individual financial derivative instruments and portfolios. Specifically, it provides the necessary functions for calculating prices and sensitivities, for hedging, and for visualizing results. The toolbox provides a set of functions that perform computations on portfolios containing up to nine types of interest-rate based financial instruments.

Bond. A long-term debt security with preset interest rate and maturity, by which the principal and interest must be paid.

Bond Option. Puts and calls on portfolios of bonds. The toolbox supports three types of put and call options on bonds:

- American option: An option that can be exercised any time until its expiration date.
- European option: An option that can be exercised only on its expiration date.
- Bermuda option: A Bermuda option is somewhat like a hybrid of American and European options. It can be exercised on predetermined dates only, usually once a month.

Bond with Embedded Options. Use bondbyhw to price bonds for a HW tree as well as optembndbyhw to price bonds with embedded options for a Hull-White interest-rate tree.

Fixed-Rate Note. A long-term debt security with preset interest rate and maturity, by which the interest must be paid. The principal may or may not be paid at maturity. In this version of Financial Derivatives Toolbox software, the principal is always paid at maturity.

Floating-Rate Note. A security similar to a bond, but in which the note's interest rate is reset periodically, relative to a reference index rate, to reflect fluctuations in market interest rates.

Cap. A contract that includes a guarantee that sets the maximum interest rate to be paid by the holder, based on an otherwise floating interest rate.

Floor. A contract that includes a guarantee setting the minimum interest rate to be received by the holder, based on an otherwise floating interest rate.

Swap. A contract between two parties obligating the parties to exchange future cash flows. This version of Financial Derivatives Toolbox software handles only the vanilla swap, which is composed of a floating-rate leg and a fixed-rate leg.

Additionally, the toolbox provides functions for the creation and pricing of arbitrary cash flow instruments based on zero-coupon bonds or on any of the various interest rate models that the toolbox supports. (See "Interest-Rate Modeling" on page 2-3.)

Swaption. An option to enter into an interest rate swap contract. A call swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate. A put swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Interest-Rate Modeling

Financial Derivatives Toolbox software computes prices and sensitivities of interest-rate contingent claims based on several methods of modeling changes in interest rates over time:

- The interest-rate term structure

This model uses sets of zero-coupon bonds to predict changes in interest rates.

- Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest rates and a specification of the volatility of forward rates to build a tree representing the evolution of the interest rates, based on a statistical process.

- Black-Derman-Toy (BDT) model

In the BDT model, all security prices and rates depend on the short rate (annualized 1-period interest rate). The model uses long rates and their volatilities to construct a tree of possible future short rates. The resulting tree can then be used to determine the value of interest-rate sensitive securities from this tree.

- Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest rates and the volatility term structure to build a trinomial recombining tree of short rates. The resulting tree is used to value interest-rate dependent securities. The implementation of the HW model in Financial Derivatives Toolbox software is limited to one factor.

- Black-Karasinski (BK) model

The BK model is a single-factor, log-normal version of the HW model.
For detailed information about interest-rate models, see:

- "Computing Prices and Sensitivities Using the Interest-Rate Term Structure" on page 2-24 for a discussion of price and sensitivity based on portfolios of zero-coupon bonds
- "Computing Prices and Sensitivities Using Interest-Rate Models" on page $2-55$ for a discussion of price and sensitivity based on the HJM and BDT interest-rate models

Abstract

Note Historically, the initial version of Financial Derivatives Toolbox software provided only the HJM interest-rate model. A later version added the BDT model. The current version adds both the HW and BK models. This chapter provides extensive examples of using the HJM and BDT models to compute prices and sensitivities of interest-rate based financial derivatives.

The HW and BK tree structures are similar to the BDT tree structure. To avoid needless repetition throughout this chapter, documentation is provided only where significant deviations from the BDT structure exist. Specifically, "HW and BK Tree Structures" on page 2-51 explains the few noteworthy differences among the various formats.

If you need more detailed information about functions that use the HW and BK tree structures, see Chapter 5, "Function Reference", which provides extensive reference information for all functions that compose this toolbox.

Rate and Price Trees

The interest-rate or price trees supported in this toolbox can be either binomial (two branches per node) or trinomial (3 branches per node). Typically, binomial trees assume that underlying interest rates or prices can only either increase or decrease at each node. Trinomial trees allow for a more complex movement of rates or prices. With trinomial trees the movement of rates or prices at each node is unrestricted (for example, up-up-up or unchanged-down-down).

Types of Trees

Financial Derivatives Toolbox trees can be classified as bushy or recombining. A bushy tree is a tree in which the number of branches increases exponentially relative to observation times; branches never recombine. In this context, a recombining tree is the opposite of a bushy tree. A recombining tree has branches that recombine over time. From any given node, the node reached by taking the path up-down is the same node reached by taking the path down-up. A bushy tree and a recombining binomial tree are illustrated next.

Bushy Tree

Recombiring Binomial Tree

In this toolbox the Heath-Jarrow-Morton model works with bushy trees. The Black-Derman-Toy model, on the other hand, works with recombining binomial trees.

The other two interest rate models supported in this toolbox, Hull-White and Black-Karasinski, work with recombining trinomial trees.

Viewing Rate or Price Movement with This Toolbox

This toolbox provides the data file deriv.mat that contains four interest-rate based trees:

- HJMTree - A bushy binomial tree
- BDTTree - A recombining binomial tree
- HWTree and BKTree - Recombining trinomial trees

The toolbox also provides the treeviewer function, which graphically displays the shape and data of price, interest rate, and cash flow trees. Viewed with treeviewer, the bushy shape of an HJM tree and the recombining shape of a BDT tree are apparent.

With treeviewer, you can also see the recombining shape of HW and BK trinomial trees.

HWTree and BKTree (recombining)

Hedging

Financial Derivatives Toolbox software also includes hedging functionality, allowing the rebalancing of portfolios to reach target costs or target sensitivities, which you can set to zero for a neutral-sensitivity portfolio.

Optionally, the rebalancing process can be self-financing or directed by a set of user-supplied constraints. For information, see:

- "Hedging" on page 4-2 for a discussion of the hedging process
- hedgeopt for a description of the function that allocates an optimal hedge
- hedgeslf for a description of the function that allocates a self-financing hedge

Understanding the Interest-Rate Term Structure

In this section...
"Introduction" on page 2-9
"Interest Rates Versus Discount Factors" on page 2-9
"Interest-Rate Term Conversions" on page 2-14
"Functions That Model the Interest-Rate Term Structure" on page 2-18

Introduction

The interest-rate term structure represents the evolution of interest rates through time. In MATLAB software, the interest-rate environment is encapsulated in a structure called RateSpec (rate specification). This structure holds all information required to completely identify the evolution of interest rates. Several functions included in Financial Derivatives Toolbox software are dedicated to the creating and managing of the RateSpec structure. Many others take this structure as an input argument representing the evolution of interest rates.

Before looking further at the RateSpec structure, examine three functions that provide key functionality for working with interest rates: disc2rate, its opposite, rate2disc, and ratetimes. The first two functions map between discount factors and interest rates. The third function, ratetimes, calculates the effect of term changes on the interest rates.

Interest Rates Versus Discount Factors

Discount factors are coefficients commonly used to find the current value of future cash flows. As such, there is a direct mapping between the rate applicable to a period of time, and the corresponding discount factor. The function disc2rate converts discount factors for a given term (period) into interest rates. The function rate2disc does the opposite; it converts interest rates applicable to a given term (period) into the corresponding discount factors.

Calculating Discount Factors from Rates

As an example, consider these annualized zero-coupon bond rates.

From	To	Rate
15 Feb 2000	15 Aug 2000	0.05
15 Feb 2000	15 Feb 2001	0.056
15 Feb 2000	15 Aug 2001	0.06
15 Feb 2000	15 Feb 2002	0.065
15 Feb 2000	15 Aug 2002	0.075

To calculate the discount factors corresponding to these interest rates, call rate2disc using the syntax

```
Disc = rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate)
```

where:

- Compounding represents the frequency at which the zero rates are compounded when annualized. For this example, assume this value to be 2 .
- Rates is a vector of annualized percentage rates representing the interest rate applicable to each time interval.
- EndDates is a vector of dates representing the end of each interest-rate term (period).
- StartDates is a vector of dates representing the beginning of each interest-rate term.
- ValuationDate is the date of observation for which the discount factors are calculated. In this particular example, use February 15, 2000 as the beginning date for all interest-rate terms.

Next, set the variables in MATLAB.

```
StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
```

```
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
```

Finally, compute the discount factors.

```
Disc = rate2disc(Compounding, Rates, EndDates, StartDates,...
ValuationDate)
Disc =
    0.9756
    0.9463
    0.9151
    0.8799
    0.8319
```

By adding a fourth column to the rates table (see "Calculating Discount Factors from Rates" on page 2-9) to include the corresponding discounts, you can see the evolution of the discount factors.

From	To	Rate	Discount
15 Feb 2000	15 Aug 2000	0.05	0.9756
15 Feb 2000	15 Feb 2001	0.056	0.9463
15 Feb 2000	15 Aug 2001	0.06	0.9151
15 Feb 2000	15 Feb 2002	0.065	0.8799
15 Feb 2000	15 Aug 2002	0.075	0.8319

Optional Time Factor Outputs

The function rate2disc optionally returns two additional output arguments: EndTimes and StartTimes. These vectors of time factors represent the start dates and end dates in discount periodic units. The scale of these units is determined by the value of the input variable Compounding.

To examine the time factor outputs, find the corresponding values in the previous example.
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,...

```
EndDates, StartDates, ValuationDate);
```

Arrange the two vectors into a single array for easier visualization.

```
Times = [StartTimes, EndTimes]
Times =
```

 \(0 \quad 1\)
 \(0 \quad 2\)
 \(0 \quad 3\)
 \(0 \quad 4\)
 05
 Because the valuation date is equal to the start date for all periods, the StartTimes vector is composed of 0 s . Also, since the value of Compounding is 2 , the rates are compounded semiannually, which sets the units of periodic discount to 6 months. The vector EndDates is composed of dates separated by intervals of 6 months from the valuation date. This explains why the EndTimes vector is a progression of integers from 1 to 5.

Alternative Syntax (rate2disc)

The function rate2disc also accommodates an alternative syntax that uses periodic discount units instead of dates. Since the relationship between discount factors and interest rates is based on time periods and not on absolute dates, this form of rate2disc allows you to work directly with time periods. In this mode, the valuation date corresponds to 0 , and the vectors StartTimes and EndTimes are used as input arguments instead of their date equivalents, StartDates and EndDates. This syntax for rate2disc is:

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Using as input the StartTimes and EndTimes vectors computed previously, you should obtain the previous results for the discount factors.

```
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Disc =
```

 0.9756
 0.9463
0.9151
0.8799
0.8319

Calculating Rates from Discounts

The function disc2rate is the complement to rate2disc. It finds the rates applicable to a set of compounding periods, given the discount factor in those periods. The syntax for calling this function is:

```
Rates = disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate)
```

Each argument to this function has the same meaning as in rate2disc. Use the results found in the previous example to return the rate values you started with.

```
Rates = disc2rate(Compounding, Disc, EndDates, StartDates,...
ValuationDate)
Rates =
    0.0500
    0.0560
    0.0600
    0 . 0 6 5 0
    0.0750
```


Alternative Syntax (disc2rate)

As in the case of rate2disc, disc2rate optionally returns StartTimes and EndTimes vectors representing the start and end times measured in discount periodic units. Again, working with the same values as before, you should obtain the same numbers.

```
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,...
EndDates, StartDates, ValuationDate);
```

Arrange the results in a matrix convenient to display.

```
Result = [StartTimes, EndTimes, Rates]
Result =
\begin{tabular}{lll}
0 & 1.0000 & 0.0500 \\
0 & 2.0000 & 0.0560 \\
0 & 3.0000 & 0.0600 \\
0 & 4.0000 & 0.0650 \\
0 & 5.0000 & 0.0750
\end{tabular}
```

As with rate2disc, the relationship between rates and discount factors is determined by time periods and not by absolute dates. Consequently, the alternate syntax for disc2rate uses time vectors instead of dates, and it assumes that the valuation date corresponds to time $=0$. The time-based calling syntax is:

```
Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);
```

Using this syntax, you again obtain the original values for the interest rates.

```
Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)
Rates =
    0.0500
    0.0560
    0.0600
    0 . 0 6 5 0
    0.0750
```


Interest-Rate Term Conversions

Interest rate evolution is typically represented by a set of interest rates, including the beginning and end of the periods the rates apply to. For zero rates, the start dates are typically at the valuation date, with the rates extending from that valuation date until their respective maturity dates.

Spot Curve to Forward Curve Conversion

Frequently, given a set of rates including their start and end dates, you may be interested in finding the rates applicable to different terms (periods). This
problem is addressed by the function ratetimes. This function interpolates the interest rates given a change in the original terms. The syntax for calling ratetimes is

```
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);
```

where:

- Compounding represents the frequency at which the zero rates are compounded when annualized.
- RefRates is a vector of initial interest rates representing the interest rates applicable to the initial time intervals.
- RefEndDates is a vector of dates representing the end of the interest rate terms (period) applicable to RefRates.
- RefStartDates is a vector of dates representing the beginning of the interest rate terms applicable to RefRates.
- EndDates represent the maturity dates for which the interest rates are interpolated.
- StartDates represent the starting dates for which the interest rates are interpolated.
- ValuationDate is the date of observation, from which the StartTimes and EndTimes are calculated. This date represents time $=0$.

The input arguments to this function can be separated into two groups:

- The initial or reference interest rates, including the terms for which they are valid
- Terms for which the new interest rates are calculated

As an example, consider the rate table specified in "Calculating Discount Factors from Rates" on page 2-9.

From

15 Feb 2000

To
15 Aug 2000

Rate

0.05

From

15 Feb 2000
15 Feb 2000
15 Feb 2000
15 Feb 2000

To

15 Feb 2001
15 Aug 2001
15 Feb 2002
15 Aug 2002

Rate

0.056
0.06
0.065
0.075

Assuming that the valuation date is February 15, 2000, these rates represent zero-coupon bond rates with maturities specified in the second column. Use the function ratetimes to calculate the forward rates at the beginning of all periods implied in the table. Assume a compounding value of 2.

```
% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];
% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';...
'15-Aug-2001'; '15-Feb-2002'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
% Find the new rates.
Rates = ratetimes(Compounding, RefRates, RefEndDates,...
RefStartDates, EndDates, StartDates, ValuationDate);
Rates =
    0.0500
    0.0620
    0.0680
    0.0801
    0.1155
```

Place these values in a table like the previous one. Observe the evolution of the forward rates based on the initial zero-coupon rates.

From	To	Rate
15 Feb 2000	15 Aug 2000	0.0500
15 Aug 2000	15 Feb 2001	0.0620
15 Feb 2001	15 Aug 2001	0.0680
15 Aug 2001	15 Feb 2002	0.0801
15 Feb 2002	15 Aug 2002	0.1155

Alternative Syntax (ratetimes)

The ratetimes function can provide the additional output arguments StartTimes and EndTimes, which represent the time factor equivalents to the StartDates and EndDates vectors. The ratetimes function uses time factors for interpolating the rates. These time factors are calculated from the start and end dates, and the valuation date, which are passed as input arguments. ratetimes can also use time factors directly, assuming time $=$ 0 as the valuation date. This alternate syntax is:
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the forward rates again. In this case, you must first find the time factors of the reference curve. Use date2time for this.

```
RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)
RefEndTimes =
```

```
RefStartTimes = date2time(ValuationDate, RefStartDates,...
Compounding)
RefStartTimes =
```

0

These are the expected values, given semiannual discounts (as denoted by a value of 2 in the variable Compounding), end dates separated by 6 -month periods, and the valuation date equal to the date marking beginning of the first period (time factor $=0$).

Now call ratetimes with the alternate syntax.

```
[Rates, EndTimes, StartTimes] = ratetimes(Compounding,...
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);
Rates =
    0.0500
    0.0620
    0.0680
    0.0801
    0.1155
```

EndTimes and StartTimes have, as expected, the same values they had as input arguments.

```
Times = [StartTimes, EndTimes]
Times =
```

 \(0 \quad 1\)
 12
 23
 \(3 \quad 4\)
 45

Functions That Model the Interest-Rate Term Structure

Financial Derivatives Toolbox software includes a set of functions to encapsulate interest-rate term information into a single structure. These
functions present a convenient way to package all information related to interest-rate terms into a common format, and to resolve interdependencies when one or more of the parameters is modified. For information, see:

- "Creating or Modifying (intenvset)" on page 2-19 for a discussion of how to create or modify an interest-rate term structure (RateSpec) using the intenvset function
- "Obtaining Specific Properties (intenvget)" on page 2-21 for a discussion of how to extract specific properties from a RateSpec

Creating or Modifying (intenvset)

The main function to create or modify an interest-rate term structure RateSpec (rates specification) is intenvset. If the first argument to this function is a previously created RateSpec, the function modifies the existing rate specification and returns a new one. Otherwise, it creates a RateSpec.

Use intenvset to create or modify an interest-rate's term structureRateSpec. If the first argument to intenvset is a previously created RateSpec, the function modifies the existing rate specification and returns a new one; otherwise, intenvset creates a RateSpec.

When using RateSpec to specify the rate term structure to price instruments based on yields (zero coupon rates) or forward rates, specify zero rates or forward rates as the input argument. However, the RateSpec structure is not limited or specific to this problem domain. RateSpec is an encapsulation of rates-times relationships; intenvset acts as either a constructor or a modifier, and intenvget as an accessor. The interest rate models supported by the Financial Derivatives Toolbox software work either with zero coupon rates or forward rates.

The other intenvset arguments are property-value pairs, indicating the new value for these properties. The properties that can be specified or modified are:

- Basis
- Compounding
- Disc
- EndDates
- EndMonthRule
- Rates
- StartDates
- ValuationDate

To learn about the properties EndMonthRule and Basis, type help ftbEndMonthRule and help ftbBasis or see the Financial Toolbox documentation.

Consider again the original table of interest rates (see "Calculating Discount Factors from Rates" on page 2-9).

From	To	Rate
15 Feb 2000	15 Aug 2000	0.05
15 Feb 2000	15 Feb 2001	0.056
15 Feb 2000	15 Aug 2001	0.06
15 Feb 2000	15 Feb 2002	0.065
15 Feb 2000	15 Aug 2002	0.075

Use the information in this table to populate the RateSpec structure.

```
StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000';
            '15-Feb-2001';
            '15-Aug-2001';
            '15-Feb-2002';
            '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
rs = intenvset('Compounding',Compounding,'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates,...
'ValuationDate', ValuationDate)
```

```
rs =
    FinObj: 'RateSpec'
    Compounding: 2
            Disc: [5x1 double]
            Rates: [5x1 double]
        EndTimes: [5x1 double]
    StartTimes: [5x1 double]
        EndDates: [5x1 double]
    StartDates: 730531
ValuationDate: 730531
            Basis: 0
EndMonthRule: 1
```

Some of the properties filled in the structure were not passed explicitly in the call to RateSpec. The values of the automatically completed properties depend on the properties that are explicitly passed. Consider for example the StartTimes and EndTimes vectors. Since the StartDates and EndDates vectors are passed in, and the ValuationDate, intenvset has all the information required to calculate StartTimes and EndTimes. Hence, these two properties are read-only.

Obtaining Specific Properties (intenvget)

The complementary function to intenvset is intenvget, which gets function specific properties from the interest-rate term structure. Its syntax is:

ParameterValue = intenvget(RateSpec, 'ParameterName')
To obtain the vector EndTimes from the RateSpec structure, enter:

```
EndTimes = intenvget(rs, 'EndTimes')
EndTimes =
```

1
2
3
4
5

To obtain Disc, the values for the discount factors that were calculated automatically by intenvset, type:

```
Disc = intenvget(rs, 'Disc')
Disc =
    0.9756
    0.9463
    0.9151
    0.8799
    0.8319
```

These discount factors correspond to the periods starting from StartDates and ending in EndDates.

Caution Although you can directly access these fields within the structure instead of using intenvget, it is advised not to do so. The format of the interest-rate term structure could change in future versions of the toolbox. Should that happen, any code accessing the RateSpec fields directly would stop working.

Now use the RateSpec structure with its functions to examine how changes in specific properties of the interest-rate term structure affect those depending on it. As an exercise, change the value of Compounding from 2 (semiannual) to 1 (annual).

```
rs = intenvset(rs, 'Compounding', 1);
```

Since StartTimes and EndTimes are measured in units of periodic discount, a change in Compounding from 2 to 1 redefines the basic unit from semiannual to annual. This means that a period of 6 months is represented with a value of 0.5 , and a period of 1 year is represented by 1 . To obtain the vectors StartTimes and EndTimes, enter:

```
StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
```

Times $=$ [StartTimes, EndTimes]

Times =
$0 \quad 0.5000$
$0 \quad 1.0000$
$0 \quad 1.5000$
$0 \quad 2.0000$
$0 \quad 2.5000$

Since all the values in StartDates are the same as the valuation date, all StartTimes values are 0 . On the other hand, the values in the EndDates vector are dates separated by 6 -month periods. Since the redefined value of compounding is 1, EndTimes becomes a sequence of numbers separated by increments of 0.5 .

Computing Prices and Sensitivities Using the Interest-Rate Term Structure

In this section...
"Introduction" on page 2-24
"Computing Instrument Prices" on page 2-25
"Computing Instrument Sensitivities" on page 2-27

Introduction

The instruments can be presented to the functions as a portfolio of different types of instruments or as groups of instruments of the same type. The current version of the toolbox can compute price and sensitivities for four instrument types using interest-rate curves:

- Bonds
- Fixed-rate notes
- Floating-rate notes
- Swaps

In addition to these instruments, the toolbox also supports the calculation of price and sensitivities of arbitrary sets of cash flows.

Note that options and interest-rate floors and caps are absent from the above list of supported instruments. These instruments are not supported because their pricing and sensitivity function require a stochastic model for the evolution of interest rates. The interest-rate term structure used for pricing is treated as deterministic, and as such is not adequate for pricing these instruments.

Financial Derivatives Toolbox software also contains functions that use the Heath-Jarrow-Morton (HJM) and Black-Derman-Toy (BDT) models to compute prices and sensitivities for financial instruments. These models support computations involving options and interest-rate floors and caps. See "Computing Prices and Sensitivities Using Interest-Rate Models" on
page 2-55 for information on computing price and sensitivities of financial instruments using the HJM and BDT models.

Computing Instrument Prices

The main function used for pricing portfolios of instruments is intenvprice. This function works with the family of functions that calculate the prices of individual types of instruments. When called, intenvprice classifies the portfolio contained in InstSet by instrument type, and calls the appropriate pricing functions. The map between instrument types and the pricing function intenvprice calls is
bondbyzero: Price a bond by a set of zero curves
fixedbyzero: Price a fixed-rate note by a set of zero curves
floatbyzero: Price a floating-rate note by a set of zero curves
swapbyzero: Price a swap by a set of zero curves

You can use each of these functions individually to price an instrument. Consult the reference pages for specific information on using these functions.
intenvprice takes as input an interest-rate term structure created with intenvprice, and a portfolio of interest-rate contingent derivatives instruments created with instadd. To learn more about instadd and the interest-rate term structure, see Chapter 1, "Getting Started".

The syntax for using intenvprice to price an entire portfolio is
Price = intenvprice(RateSpec, InstSet)
where:

- RateSpec is the interest-rate term structure.
- InstSet is the name of the portfolio.

Example: Pricing a Portfolio of Instruments

Consider this example of using the intenvprice function to price a portfolio of instruments supplied with Financial Derivatives Toolbox software.

The provided MAT-file deriv.mat stores a portfolio as an instrument set variable ZeroInstSet. The MAT-file also contains the interest-rate term structure ZeroRateSpec. You can display the instruments with the function instdisp.

```
load deriv.mat;
instdisp(ZeroInstSet)
\begin{tabular}{llllll} 
Index & Type CouponRate Settle & Maturity & Period Basis... \\
1 & Bond 0.04 & 01-Jan-2000 & 01-Jan-2003 & 1 & NaN... \\
2 & Bond 0.04 & 01-Jan-2000 & 01-Jan-2004 & 2 & NaN...
\end{tabular}
\begin{tabular}{llllll} 
Index & Type CouponRate Settle & Maturity & FixedReset Basis... \\
3 & Fixed 0.04 & 01 -Jan-2000 01 -Jan-2003 & 1 & NaN...
\end{tabular}
\begin{tabular}{llllll} 
Index & Type Spread Settle & Maturity & FloatReset Basis... \\
4 & Float 20 & \(01-\) Jan-2000 & 01-Jan-2003 & 1 & NaN...
\end{tabular}
\begin{tabular}{lllll} 
Index Type LegRate & Settle & Maturity & LegReset Basis... \\
5 & Swap [0.06 20] & \(01-\) Jan-2000 & \(01-\) Jan-2003 & {\(\left[\begin{array}{ll}1 & 1\end{array}\right] \quad\) NaN... }
\end{tabular}
```

Use intenvprice to calculate the prices for the instruments contained in the portfolio ZeroInstSet.

```
format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)
Prices =
```

98.72
97.53
98.72
100.55
3.69

The output Prices is a vector containing the prices of all the instruments in the portfolio in the order indicated by the Index column displayed by
instdisp. Consequently, the first two elements in Prices correspond to the first two bonds; the third element corresponds to the fixed-rate note; the fourth to the floating-rate note; and the fifth element corresponds to the price of the swap.

Computing Instrument Sensitivities

In general, you can compute sensitivities either as dollar price changes or as percentage price changes. The toolbox reports all sensitivities as dollar sensitivities.

Using the interest-rate term structure, you can calculate two types of derivative price sensitivities, delta and gamma. Delta represents the dollar sensitivity of prices to shifts in the observed forward yield curve. Gamma represents the dollar sensitivity of delta to shifts in the observed forward yield curve.

The intenvsens function computes instrument sensitivities and instrument prices. If you need both the prices and sensitivity measures, use intenvsens. A separate call to intenvprice is not required.

Here is the syntax
[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)
where, as before:

- RateSpec is the interest-rate term structure.
- InstSet is the name of the portfolio.

Example: Sensitivities and Prices

Here is an example that uses intenvsens to calculate both sensitivities and prices.

```
format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);
```

Display the results in a single matrix in bank format.

```
All = [Delta Gamma Price]
All =
\begin{tabular}{rrr}
-272.64 & 1029.84 & 98.72 \\
-347.44 & 1622.65 & 97.53 \\
-272.64 & 1029.84 & 98.72 \\
-1.04 & 3.31 & 100.55 \\
-282.04 & 1059.62 & 3.69
\end{tabular}
```

To view the per-dollar sensitivity, divide the first two columns by the last one. [Delta./Price, Gamma./Price, Price] ans =

-2.76	10.43	98.72
-3.56	16.64	97.53
-2.76	10.43	98.72
-0.01	0.03	100.55
-76.39	286.98	3.69

Understanding Interest-Rate Models

In this section...
"Introduction" on page 2-29
"Building a Tree of Forward Rates" on page 2-30
"Specifying the Volatility Model (VolSpec)" on page 2-32
"Specifying the Interest-Rate Term Structure (RateSpec)" on page 2-35
"Calibrating the Hull-White Model Using Market Data" on page 2-36
"Specifying the Time Structure (TimeSpec)" on page 2-41
"Examples of Tree Creation" on page 2-42
"Examining Trees" on page 2-43

Introduction

Financial Derivatives Toolbox software supports the Black-Derman-Toy (BDT), Black-Karasinski (BK), Heath-Jarrow-Morton (HJM), and Hull-White (HW) interest-rate models. The Heath-Jarrow-Morton model is one of the most widely used models for pricing interest-rate derivatives. The model considers a given initial term structure of interest rates and a specification of the volatility of forward rates to build a tree representing the evolution of the interest rates, based on a statistical process. For further explanation, see the book Modelling Fixed Income Securities and Interest Rate Options by Robert A. Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for pricing interest-rate derivatives. The model considers a given initial zero rate term structure of interest rates and a specification of the yield volatilities of long rates to build a tree representing the evolution of the interest rates. For further explanation, see the paper "A One Factor Model of Interest Rates and its Application to Treasury Bond Options" by Fischer Black, Emanuel Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates and the volatility term structure to build a trinomial recombining tree of short rates. The resulting tree is used to value interest rate dependent securities.

The implementation of the Hull-White model in Financial Derivatives Toolbox software is limited to one factor.

The Black-Karasinski model is a single factor, log-normal version of the Hull-White model.

For further information on the Hull-White and Black-Karasinski models, see the book Options, Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates

The tree of forward rates is the fundamental unit representing the evolution of interest rates in a given period of time. This section explains how to create a forward-rate tree using Financial Derivatives Toolbox software.

Note To avoid needless repetition, this document uses the HJM and BDT models to illustrate the creation and use of interest-rate trees. The HW and BK models are similar to the BDT model. Where specific differences exist, they are documented in "HW and BK Tree Structures" on page 2-51.

The MATLAB functions that create rate trees are hjmtree and bdttree. The hjmtree function creates the structure, HJMTree, containing time and forward-rate information for a bushy tree. The bdttree function creates a similar structure, BDTTree, for a recombining tree.

This structure is a self-contained unit that includes the tree of rates (found in the FwdTree field of the structure) and the volatility, rate, and time specifications used in building this tree.

These functions take three structures as input arguments:

- The volatility model VolSpec. (See "Specifying the Volatility Model (VolSpec)" on page 2-32.)
- The interest-rate term structure RateSpec. (See "Specifying the Interest-Rate Term Structure (RateSpec)" on page 2-35.)
- The tree time layout TimeSpec. (See "Specifying the Time Structure (TimeSpec)" on page 2-41.)

An easy way to visualize any trees you create is with the treeviewer function, which displays trees in a graphical manner. See "Graphical Representation of Trees" on page 2-68 for information about treeviewer.

Calling Sequence

The calling syntax for hjmtree is
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)
Similarly, the calling syntax for bdttree is
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)
Each of these functions requires VolSpec, RateSpec, and TimeSpec input arguments:

- VolSpec is a structure that specifies the forward-rate volatility process. You create VolSpec using either of the functions hjmvolspec or bdtvolspec.
The hjmvolspec function supports the specification of up to three factors.
It handles these models for the volatility of the interest-rate term structure:
- Constant
- Stationary
- Exponential
- Vasicek
- Proportional

A one-factor model assumes that the interest term structure is affected by a single source of uncertainty. Incorporating multiple factors allows you to specify different types of shifts in the shape and location of the interest-rate structure. See hjmvolspec for details.

The bdtvolspec function supports only a single volatility factor. The volatility remains constant between pairs of nodes on the tree. You supply the input volatility values in a vector of decimal values. See bdtvolspec for details.

- RateSpec is the interest-rate specification of the initial rate curve. You create this structure with the function intenvset. (See "Functions That Model the Interest-Rate Term Structure" on page 2-18.)
- TimeSpec is the tree time layout specification. You create this variable with the functions hjmtimespec or bdttimespec. It represents the mapping between level times and level dates for rate quoting. This structure indirectly determines the number of levels in the tree.

Specifying the Volatility Model (VolSpec)

Because HJM supports multifactor (up to 3) volatility models while BDT (also, BK and HW) supports only a single volatility factor, the hjmvolspec and bdtvolspec functions require different inputs and generate slightly different outputs. For examples, see "Creating an HJM Volatility Model" on page 2-32. For BDT examples see "Creating a BDT Volatility Model" on page 2-34.

Creating an HJM Volatility Model

The function hjmvolspec generates the structure VolSpec, which specifies the volatility process $\sigma(t, T)$ used in the creation of the forward-rate trees. In this context capital T represents the starting time of the forward rate, and t represents the observation time. The volatility process can be constructed from a combination of factors specified sequentially in the call to function that creates it. Each factor specification starts with a string specifying the name of the factor, followed by the pertinent parameters.

HJM Volatility Specification Example. Consider an example that uses a single factor, specifically, a constant-sigma factor. The constant factor specification requires only one parameter, the value of $\boldsymbol{\sigma}$. In this case, the value corresponds to 0.10 .

```
HJMVolSpec = hjmvolspec('Constant', 0.10)
HJMVolSpec =
    FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
    FactorArgs: {{1x1 cell}}
    SigmaShift: 0
    NumFactors: 1
```

```
    NumBranch: 2
    PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]
```

The NumFactors field of the VolSpec structure, VolSpec. NumFactors = 1, reveals that the number of factors used to generate VolSpec was one. The FactorModels field indicates that it is a Constant factor, and the NumBranches field indicates the number of branches. As a consequence, each node of the resulting tree has two branches, one going up, and the other going down.

Consider now a two-factor volatility process made from a proportional factor and an exponential factor.

```
% Exponential factor
Sigma_0 = 0.1;
Lambda = 1;
% Proportional factor
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [ 1 ; 2 ; 3 ];
% Build VolSpec
HJMVolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, ...
1e6,'Exponential', Sigma_0, Lambda)
HJMVolSpec =
            FinObj: 'HJMVolSpec'
FactorModels: {'Proportional' 'Exponential'}
    FactorArgs: {{1x3 cell} {1x2 cell}}
    SigmaShift: 0
    NumFactors: 2
            NumBranch: 3
            PBranch: [0.2500 0.2500 0.5000]
    Fact2Branch: [2x3 double]
```

The output shows that the volatility specification was generated using two factors. The tree has 3 branches per node. Each branch has probabilities of $0.25,0.25$, and 0.5 , going from top to bottom.

Creating a BDT Volatility Model

The function bdtvolspec generates the structure VolSpec, which specifies the volatility process. The function requires three input arguments:

- The valuation date ValuationDate
- The yield volatility end dates VolDates
- The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation method, can be included.

The syntax used for calling bdtvolspec is:
BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,... InterpMethod)
where:

- ValuationDate is the first observation date in the tree.
- VolDates is a vector of dates representing yield volatility end dates.
- VolCurve is a vector of yield volatility values.
- InterpMethod is the method of interpolation to use. The default is linear.

BDT Volatility Specification Example. Consider the following example:

```
ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];
```

Use bdtvolspec to create a volatility specification. Because no interpolation method is explicitly specified, the function uses the linear default.

```
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
BDTVolSpec =
    FinObj: 'BDTVolSpec'
    ValuationDate: 730486
```

```
    VolDates: [5x1 double]
    VolCurve: [5x1 double]
VolInterpMethod: 'linear'
```


Specifying the Interest-Rate Term Structure (RateSpec)

The structure RateSpec is an interest term structure that defines the initial forward-rate specification from which the tree rates are derived. "Functions That Model the Interest-Rate Term Structure" on page 2-18 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Rate Specification Creation Example

Consider the following example:

```
Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';
            '01-Jan-2001';
            '01-Jan-2002';
            '01-Jan-2003'];
EndDates = ['01-Jan-2001';
            '01-Jan-2002';
            '01-Jan-2003';
            '01-Jan-2004'];
ValuationDate = '01-Jan-2000';
RateSpec = intenvset('Compounding',1,'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)
RateSpec =
            FinObj: 'RateSpec'
    Compounding: 1
            Disc: [4x1 double]
            Rates: [4x1 double]
            EndTimes: [4x1 double]
```

```
    StartTimes: [4x1 double]
    EndDates: [4x1 double]
    StartDates: [4x1 double]
ValuationDate: 730486
    Basis: 0
EndMonthRule: 1
```

Use the function datedisp to examine the dates defined in the variable RateSpec. For example:

```
datedisp(RateSpec.ValuationDate)
```

01-Jan-2000

Calibrating the Hull-White Model Using Market Data

The pricing of interest rate derivative securities relies on models that describe the underlying process. These interest rate models depend on one or more parameters that you must determine by matching the model predictions to the existing data available in the market. In the Hull-White model, there are two parameters related to the short rate process: mean reversion and volatility. Determining these parameters, such that the model is able to reproduce as close as possible the prices of caps or floors observed in the market, is called calibration. The calibration routines find the parameters that minimize the difference between the model price predictions and the market prices for caps and floors.

In the case of the Hull-White model, the minimization is two dimensional with respect to mean reversion (a) and volatility (σ). That is, calibrating the Hull-White model minimizes the difference between the model prices and market prices for caps and floors:

```
(ModelPrice \((\alpha, \sigma)\) - MarketPrice)
(MarketPrice)
```


Hull-White Model Calibration Example

You can use hwcalbycap and hwcalbyfloor to determine the volatility parameters, mean reversion (a) and volatility (σ), such that the model fits the prices of actively traded instruments for caps and floors as closely as possible. Consider the following caplet market information:

```
MarketMat = {'21-Mar-2008';
    '21-Jun-2008';
    '21-Sep-2008';
    '21-Dec-2008';
    '21-Mar-2009';
    '21-Jun-2009';
    '21-Sep-2009';
    '21-Dec-2009';
    '21-Mar-2010';
    '21-Jun-2010';
    '21-Sep-2010';
    '21-Dec-2010';
    '21-Mar-2011'};
MarketStrike = [0.0590; 0.0690; 0.0790];
MarketVol = [llllllllllllllll
    0.1755 0.1755 0.1726;
    0.1525 0.1725 0.1725 0.1750 0.1800 0.1800 0.1800 0.1800 0.1725 0.1750 \ldots.
    0.1750 0.1750 0.1725;
    0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751 ...
    0.1750 0.1745 0.1719];
```

1 Create RateSpec using the following data:

```
Rates= [0.0627;
    0.0657;
    0.0691;
    0.0717;
    0.0739;
    0.0755;
    0.0765;
    0.0772;
    0.0779;
    0.0783;
    0.0786;
    0.0789;
    0.0792;
    0.0793];
```

```
ValuationDate = '21-Jan-2008';
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008'; ...
    '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';.....
    '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010';....
    '21-Mar-2011';'21-Jun-2011'};
Compounding = 4;
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', 0);
```

2 Call the calibration routine to find the values for the volatility parameters α and σ :

```
Settle = ' Jan-21-2008';
Maturity = 'Mar-21-2011';
Strike = 0.0690;
Reset = 4;
Principal = 1000;
Basis = 0;
o=optimset('TolFun',100*eps);
[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMat, MarketVol,...
Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal, 'Basis',...
Basis, 'OptimOptions', o)
```

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag $=2$.
LSQNONLIN Diagnostic Message: 'Optimization terminated: norm of the current step is less
than OPTIONS.TolX.
> In hwcalbycapfloor at 85
In hwcalbycap at 77
Alpha =
$1.0000 \mathrm{e}-006$
Sigma =
0.0127

The warning above indicates that the conversion was not optimal. The search algorithm used by the Optimization Toolbox ${ }^{\text {TM }}$ function lsqnonlin could not find a solution that complies with all the constraints used by the function. To discern whether the solution is acceptable, you must look at the results of the optimization by specifying a third output (OptimOut) for hwcalbycap.

```
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o);
```

The OptimOut.residual field of the OptimOut structure is the optimization residual. This value contains the difference between the Black caplets and those calculated during the optimization. You can use the OptimOut.residual value to calculate the percentual difference (error) compared to Black Caplet prices and then decide whether the residual is acceptable. There will almost always be some residual, so you must decide if parametrizing the market with a single value of alpha and sigma is acceptable.

3 You can price the caplets using the market data and Black's formula to obtain the reference caplet values:

```
MarketMatNum = datenum(MarketMat);
[Mats,Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(MarketMatNum, MarketStrike, MarketVol, datenum(Maturity),...
Strike, 'spline');
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal);
Caplets = Caplets(2:end)';
```

4 You can compare the optimized values and the Black values and display graphically:

```
OptimCaplets = Caplets+OptimOut.residual;
disp([Caplets OptimCaplets])
plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');
datetick('x', 2)
xlabel('Caplet Maturity');
ylabel('Caplet Price');
title('Black and Calibrated Caplets');
```

```
h = legend('Black Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on
\(0.3216 \quad 0.3643\)
    1.6363 1.6612
    2.4872 2.4983
    3.1912 3.1883
    3.4121 3.4051
    3.2698 3.2653
    3.2400 3.2379
    3.4819 3.4699
    3.2437 3.2426
    3.1968 3.1977
    3.3011 3.2980
    3.3771 3.3684
```

5 To visualize this, consider the following comparison:

Specifying the Time Structure (TimeSpec)

The structure TimeSpec specifies the time structure for an interest-rate tree. This structure defines the mapping between the observation times at each level of the tree and the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function. These functions require three input arguments:

- The valuation date ValuationDate
- The maturity date Maturity
- The compounding rate Compounding

For example, the syntax used for calling hjmtimespec is
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
where:

- ValuationDate is the first observation date in the tree.
- Maturity is a vector of dates representing the cash flow dates of the tree. Any instrument cash flows with these maturities fall on tree nodes.
- Compounding is the frequency at which the rates are compounded when annualized.

Creating a Time Specification

Calling the time specification creation functions with the same data used to create the interest-rate term structure, RateSpec builds the structure that specifies the time layout for the tree.

HJM Time Specification Example. Consider the following example:

```
Maturity = EndDates;
HJMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
HJMTimeSpec =
    FinObj: 'HJMTimeSpec'
ValuationDate: 730486
    Maturity: [4x1 double]
    Compounding: 1
        Basis: 0
    EndMonthRule: 1
```

Note that maturities specified when building TimeSpec need not coincide with the EndDates of the rate intervals in RateSpec. Since TimeSpec defines the time-date mapping of the tree, the rates in RateSpec are interpolated to obtain the initial rates with maturities equal to those in TimeSpec.

Creating a BDT Time Specification. Consider the following example:

```
Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
BDTTimeSpec =
```

 FinObj: 'BDTTimeSpec'
 ValuationDate: 730486
 Maturity: [4x1 double]
 Compounding: 1
 Basis: 0
 EndMonthRule: 1

Examples of Tree Creation

Use the VolSpec, RateSpec, and TimeSpec you have previously created as inputs to the functions used to create HJM and BDT trees.

Creating an HJM Tree

```
% Reset the volatility factor to the Constant case
HJMVolSpec = hjmvolspec('Constant', 0.10);
HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)
HJMTree =
    FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1x1 struct]
            tObs: [0 1 2 3]
            TFwd: {[4\times1 double] [3\times1 double] [2x1 double] [3]}
    CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
    FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}
```


Creating a BDT Tree

Now use the previously computed values for VolSpec, RateSpec, and TimeSpec as input to the function bdttree to create a BDT tree.

```
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)
BDTTree =
    FinObj: 'BDTFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1\times1 struct]
RateSpec: [1\times1 struct]
    tObs: [0 1.00 2.00 3.00]
    TFwd: {[4x1 double] [3\times1 double] [2x1 double] [3.00]}
    CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]}
FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}
```


Examining Trees

When working with the models, Financial Derivatives Toolbox software uses trees to represent forward rates, prices, and so on. At the highest level, these trees have structures wrapped around them. The structures encapsulate
information required to interpret completely the information contained in a tree.

Consider this example, which uses the interest rate and portfolio data in the MAT-file deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.
load deriv.mat

Display the list of the variables loaded from the MAT-file.
whos

Name	Size	Bytes	Class	Attributes
BDTInstSet	1×1	15956	struct	
BDTTree	1×1	5138	struct	
BKInstSet	1×1	15946	struct	
BKTree	1×1	5904	struct	
CRRInstSet	1×1	12434	struct	
CRRTree	1×1	5058	struct	
EQPInstSet	1×1	12434	struct	
EQPTree	1×1	5058	struct	
HJMInstSet	1×1	15948	struct	
HJMTree	1×1	5838	struct	
HWInstSet	1×1	5946	struct	
HWTree	1×1	12438	struct	
ITTInstSet	1×1	8862	struct	
ITTTree	1×1	10282	struct	
ZeroInstSet	1×1	1580	struct	

HJM Tree Structure

You can now examine in some detail the contents of the HJMTree structure contained in this file.

HJMTree

```
HJMTree
```

```
    FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1 2 3]
    TFwd: {[4\times1 double] [3\times1 double] [2x1 double] [3]}
    CFlowT: {[4\times1 double] [3\times1 double] [2x1 double] [4]}
FwdTree:{[4\times1 double][3\times1\times2 double][2\times2\times2 double][1\times4\times2 double]}
```

FwdTree contains the actual forward-rate tree. MATLAB software represents it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec, which contain the volatility, time structure, and rate structure information respectively.

First Node. Observe the forward rates in FwdTree. The first node represents the valuation date, t Obs $=0$.

HJMTree. FwdTree \{1\}
ans $=$
1.0356
1.0468
1.0523
1.0563

Note Financial Derivatives Toolbox software uses inverse discount notation for forward rates in the tree. An inverse discount represents a factor by which the current value of an asset is multiplied to find its future value. In general, these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see where these values originate. Arrange the values in a single array.

```
[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes...
HJMTree.RateSpec.Rates]
ans =
\begin{tabular}{rrr}
0 & 1.0000 & 0.0356 \\
1.0000 & 2.0000 & 0.0468 \\
2.0000 & 3.0000 & 0.0523 \\
3.0000 & 4.0000 & 0.0563
\end{tabular}
```

If you find the corresponding inverse discounts of the interest rates in the third column, you have the values at the first node of the tree. You can turn interest rates into inverse discounts using the function rate2disc.

```
Disc = rate2disc(HJMTree.TimeSpec.Compounding,...
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,...
HJMTree.RateSpec.StartTimes);
FRates = 1./Disc
FRates =
    1.0356
    1.0468
    1.0523
    1.0563
```

Second Node. The second node represents the first-rate observation time, tObs $=1$. This node displays two states: one representing the branch going up and the other representing the branch going down.

Note that HJMTree.VolSpec. NumBranch $=2$.
HJMTree.VolSpec
ans $=$

```
            FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
    FactorArgs: {{1x1 cell}}
    SigmaShift: 0
    NumFactors: 1
```

```
    NumBranch: 2
    PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]
```

Examine the rates of the node corresponding to the up branch.

```
HJMTree.FwdTree{2}(:,:,1)
ans =
    1.0364
    1.0420
    1.0461
```

Now examine the corresponding down branch.

```
HJMTree.FwdTree{2}(:, : ,2)
```

ans $=$
1.0574
1.0631
1.0672

Third Node. The third node represents the second observation time, tObs $=2$. This node contains a total of four states, two representing the branches going up and the other two representing the branches going down. Examine the rates of the node corresponding to the up states.

```
HJMTree.FwdTree{3}(:, :,1)
ans =
    1.0317 1.0526
    1.0358 1.0568
```

Next examine the corresponding down states.

```
HJMTree.FwdTree{3}(:, : ,2)
ans =
```

1.0526	1.0738
1.0568	1.0781

Isolating a Specific Node. Starting at the third level, indexing within the tree cell array becomes complex, and isolating a specific node can be difficult. The function bushpath isolates a specific node by specifying the path to the node as a vector of branches taken to reach that node. As an example, consider the node reached by starting from the root node, taking the branch up, then the branch down, and then another branch down. Given that the tree has only two branches per node, branches going up correspond to a 1 , and branches going down correspond to a 2 . The path up-down-down becomes the vector [1 2 2].

```
FRates = bushpath(HJMTree.FwdTree, [llll)
FRates =
    1.0356
    1.0364
    1.0526
    1.0674
```

bushpath returns the spot rates for all the nodes touched by the path specified in the input argument, the first one corresponding to the root node, and the last one corresponding to the target node.

Isolating the same node using direct indexing obtains

```
HJMTree.FwdTree{4}(:, 3, 2)
ans =
    1.0674
```

As expected, this single value corresponds to the last element of the rates returned by bushpath.

You can use these techniques with any type of tree generated with Financial Derivatives Toolbox software, such as forward-rate trees or price trees.

BDT Tree Structure

You can now examine in some detail the contents of the BDTTree structure.

```
BDTTree
BDTTree =
    FinObj: 'BDTFwdTree'
    VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1 2 3]
    TFwd: {[4x1 double] [3\times1 double] [2x1 double] [3]}
    CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree: {1x4 cell}
```

FwdTree contains the actual rate tree. MATLAB software represents it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec, which contain the volatility, time structure, and rate structure information respectively.

Look at the RateSpec structure used in generating this tree to see where these values originate. Arrange the values in a single array.
[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes...
BDTTree.RateSpec.Rates]
ans $=$

0	1.0000	0.1000
0	2.0000	0.1100
0	3.0000	0.1200
0	4.0000	0.1250

Look at the rates in FwdTree. The first node represents the valuation date, tObs $=0$. The second node represents tObs $=1$. Examine the rates at the second, third, and fourth nodes.

```
BDTTree.FwdTree{2}
ans =
    1.0979 1.1432
```

The second node represents the first observation time, tObs $=1$. This node contains a total of two states, one representing the branch going up (1.0979) and the other representing the branch going down (1.1432).

Note The convention in this document is to display prices going up on the upper branch. Consequently, when displaying rates, rates are falling on the upper branch and increasing on the lower branch.

```
BDTTree.FwdTree{3}
ans =
    1.0976 1.1377 1.1942
```

The third node represents the second observation time, tObs $=2$. This node contains a total of three states, one representing the branch going up (1.0976), one representing the branch in the middle (1.1377) and the other representing the branch going down (1.1942).

```
BDTTree.FwdTree{4}
ans =
    1.0872 1.1183 1.1606 1.2179
```

The fourth node represents the third observation time, tObs $=3$. This node contains a total of four states, one representing the branch going up (1.0872), two representing the branches in the middle (1.1183 and 1.1606), and the other representing the branch going down (1.2179).

Isolating a Specific Node. The function treepath isolates a specific node by specifying the path to the node as a vector of branches taken to reach that node. As an example, consider the node reached by starting from the root node, taking the branch up, then the branch down, and finally another branch down. Given that the tree has only two branches per node, branches going up correspond to a 1 , and branches going down correspond to a 2 . The path up-down-down becomes the vector [$\left.\begin{array}{lll}1 & 2 & 2\end{array}\right]$.

```
FRates = treepath(BDTTree.FwdTree, [ll 2 2])
FRates =
```

1.1000
1.0979
1.1377
1.1606
treepath returns the short rates for all the nodes touched by the path specified in the input argument, the first one corresponding to the root node, and the last one corresponding to the target node.

HW and BK Tree Structures

The HW and BK tree structures are similar to the BDT tree structure. You can see this if you examine the sample HW tree contained in the file deriv.mat.

```
load deriv.mat:
HWTree
FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [[0 1 1 2 3}
dObs: [731947 732313 732678 733043]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}
```

All fields of this structure are similar to their BDT counterparts. There are two additional fields not present in BDT: Probs and Connect. The Probs field represents the occurrence probabilities at each branch of each node in the tree. The Connect field describes the connectivity of the nodes of a given tree level to nodes to the next tree level.

Probs Field. While BDT and one-factor HJM models have equal probabilities for each branch at a node, HW and BK do not. For HW and BK trees, the Probs field indicates the likelihood that a particular branch will be taken in moving from one node to another node on the next level.

The Probs field consists of a cell array with 1 cell per tree level. Each cell is a 3 -by-NUMNODES array with the top row representing the probability of an up movement, the middle row representing the probability of a middle movement, and the last row the probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the structure, corresponding to the first (root) and second levels of the tree.

```
HWTree.Probs{1}
0.166666666666667
0.666666666666667
0.166666666666667
HWTree.Probs{2}
0.12361333418768 0.166666666666667 0.21877591615172
0.65761074966060 0.666666666666667 0.65761074966060
0.21877591615172 0.16666666666667 0.12361333418768
```

Reading from top to bottom, the values in HWTree. Probs $\{1\}$ correspond to the up, middle, and down probabilities at the root node.

HWTree. Probs $\{2\}$ is a 3-by- 3 matrix of values. The first column represents the top node, the second column represents the middle node, and the last column represents the bottom node. As with the root node, the first, second, and third rows hold the values for up, middle, and down branching off each node.

As expected, the sum of all the probabilities at any node equals 1.

```
sum(HWTree.Probs{2})
1.0000 1.0000 1.0000
```

Connect Field. The other field that distinguishes HW and BK tree structures from the BDT tree structure is Connect. This field describes how each node in a given level connects to the nodes of the next level. The need for this field arises from the possibility of nonstandard branching in a tree.

The Connect field of the HW tree structure consists of a cell array with 1 cell per tree level.

```
HWTree.Connect
ans =
[2] [1x3 double] [1x5 double]
```

Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to a node in the corresponding tree level and represents the index of the node in the next tree level that the middle branch of the node connects to.

If you subtract 1 from the values contained in Connect, you reveal the index of the nodes in the next level that the up branch connects to. If you add 1 to the values, you reveal the index of the corresponding down branch.

As an illustration, consider HWTree.Connect \{1\}:

```
HWTree.Connect{1}
```

```
ans =
```

2
This indicates that the middle branch of the root node connects to the second (from the top) node of the next level, as expected. If you subtract 1 from this value, you obtain 1, which tells you that the up branch goes to the top node. If you add 1 , you obtain 3 , which points to the last node of the second level of the tree.

Now consider level 3 in this example:
HWTree. Connect \{3\}
$\begin{array}{lllll}2 & 2 & 3 & 4 & 4\end{array}$
On this level, there is nonstandard branching. This can be easily recognized because the middle branch of two nodes is connected to the same node on the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third level of the tree, on the top and bottom nodes. The first and second nodes connect to the same trio of nodes on the next level. Similar branching occurs at the bottom and next-to-bottom nodes of the tree.

Computing Prices and Sensitivities Using Interest-Rate Models

In this section...
"Introduction" on page 2-55
"Computing Instrument Prices" on page 2-55
"Computing Instrument Sensitivities" on page 2-64

Introduction

For purposes of illustration, this section relies on the HJM and BDT models. The HW and BK functions that perform price and sensitivity computations are not explicitly shown here. Functions that use the HW and BK models operate similarly to the BDT model.

Computing Instrument Prices

The portfolio pricing functions hjmprice and bdtprice calculate the price of any set of supported instruments, based on an interest-rate tree. The functions are capable of pricing these instrument types:

- Bonds
- Bond options
- Arbitrary cash flows
- Fixed-rate notes
- Floating-rate notes
- Caps
- Floors
- Swaps
- Swaptions

For example, the syntax for calling hjmprice is:

```
[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)
```

Similarly, the calling syntax for bdtprice is:
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)
Each function requires two input arguments: the interest-rate tree and the set of instruments, InstSet. An optional argument Options further controls the pricing and the output displayed. (See Appendix A, "Derivatives Pricing Options" for information about the Options argument.)

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward-rate process, created using hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an interest-rate process, created using bdttree. See "Building a Tree of Forward Rates" on page 2-30 to learn how to create these structures.

InstSet is the set of instruments to be priced. This structure represents the set of instruments to be priced independently using the model. Chapter 1, "Getting Started", explains how to create this variable.

Options is an options structure created with the function derivset. This structure defines how the tree is used to find the price of instruments in the portfolio, and how much additional information is displayed in the command window when calling the pricing function. If this input argument is not specified in the call to the pricing function, a default Options structure is used. The pricing options structure is described in "Pricing Options Structure" on page A-2.

The portfolio pricing functions classify the instruments and call the appropriate instrument-specific pricing function for each of the instrument types. The HJM instrument-specific pricing functions are bondbyhjm, cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, swapbyhjm, and swaptionbyhjm. A similarly named set of functions exists for BDT models. For a list of these, see "Black-Derman-Toy Trees" on page 5-4.

You can also use these functions directly to calculate the price of sets of instruments of the same type. See Chapter 6, "Functions - Alphabetical List" for these individual functions for further information.

HJM Pricing Example

Consider the following example, which uses the portfolio and interest-rate data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

```
load deriv.mat
```

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

whos				
Name	Size	Bytes	Class	Atributes
BDTInstSet	1×1	15956	struct	
BDTTree	1×1	5138	struct	
BKInstSet	1×1	15946	struct	
BKTree	1×1	5904	struct	
CRRInstSet	1×1	12434	struct	
CRRTree	1×1	5058	struct	
EQPInstSet	1×1	12434	struct	
EQPTree	1×1	5058	struct	
HJMInstSet	1×1	5848	struct	
HJMTree	1×1	15946	struct	struct
HWInstSet	1×1	5904	struct	
HWTree	1×1	12438	struct	
ITTInstSet	1×1	8862	struct	
ITTTree	1×1	10282	struct	
ZeroInstSet	1×1	1580	struct	

HJMTree and HJMInstSet are the input arguments required to call the function hjmprice.

Use the function instdisp to examine the set of instruments contained in the variable HJMInstSet.

```
instdisp(HJMInstSet)
```



```
\begin{tabular}{lllllllll} 
Index & Type & UnderInd & OptSpec & Strike & ExerciseDates & AmericanOpt & Name & Quantity \\
3 & OptBond 2 & call & 101 & \(01-J a n-2003\) & NaN & Option 101 & -50
\end{tabular}
Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80
\begin{tabular}{lllllll} 
Index Type Spread Settle & Maturity & FloatReset & Basis Principal Name & Quantity
\end{tabular}
\begin{tabular}{lllllllll} 
Index & Type Strike Settle & Maturity & & CapReset & Basis Principal Name & Quantity \\
6 & Cap 0.03 & 01-Jan-2000 & 01 -Jan-2004 & 1 & NaN & NaN & \(3 \%\) Cap 30
\end{tabular}
Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.03 01-Jan-2000 01-Jan-2004 \(1 \quad\) NaN NaN 3\% Floor 40
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10
```

Note that there are eight instruments in this portfolio set: two bonds, one bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument set.

Price = hjmprice(HJMTree, HJMInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price $=$

```
98.7159
97.5280
    0.0486
98.7159
100.5529
    6.2831
    0.0486
    3.6923
```

Note The warning shown above appears because some of the cash flows for the second bond do not fall exactly on a tree node.

BDT Pricing Example

Load the MAT-file deriv.mat into the MATLAB workspace.

```
load deriv.mat
```

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.
whos

Name	Size	Bytes	Class	Attributes
BDTInstSet	1×1	15956	struct	
BDTTree	1×1	5138	struct	
BKInstSet	1×1	15946	struct	
BKTree	1×1	5904	struct	
CRRInstSet	1×1	12434	struct	
CRRTree	1×1	5058	struct	
EQPInstSet	1×1	12434	struct	
EQPTree	1×1	5058	struct	
HJMInstSet	1×1	15948	struct	
HJMTree	1×1	5838	struct	
HWInstSet	1×1	15946	struct	
HWTree	1×1	5904	struct	
ITTInstSet	1×1	12438	struct	

ITTTree	1×1	8862	struct
ZeroInstSet	1×1	10282	struct
ZeroRateSpec	1×1	1580	struct

BDTTree and BDTInstSet are the input arguments required to call the function bdtprice.

Use the function instdisp to examine the set of instruments contained in the variable BDTInstSet.

```
instdisp(BDTInstSet)
```

Index	Type	CouponRate	Settle	Maturity	Period	Basis	Name	Quantity
1	Bond	0.1	01 -Jan-2000	01-Jan-2003	1	NaN .	10\% bond	100
2	Bond	0.1	01 -Jan-2000	01-Jan-2004	2	NaN .	10\% bond	- 50

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.09 01-Jan-2000 01-Jan-2004 $1 \quad$ NaN NaN 9\% Floor 40
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.15 10] 01-Jan-2000 01-Jan-2003 [11 1] NaN NaN [NaN] 15\%/10BP Swap 10

Note that there are eight instruments in this portfolio set: two bonds, one bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument set.

```
Price = bdtprice(BDTTree, BDTInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
    95.5030
    93.9079
        1.7657
    95.5030
    100.4865
        1.4863
        0.0245
        7.4222
```


Price Vector Output

The prices in the output vector Price correspond to the prices at observation time zero (tObs = 0), which is defined as the valuation date of the interest-rate tree. The instrument indexing within Price is the same as the indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(HJMInstSet, 'FieldName','Name')
InstNames =
4% bond
4% bond
Option 101
4% Fixed
```

```
20BP Float
3% Cap
3% Floor
6%/20BP Swap
```

Consequently, in the Price vector, the fourth element, 98.7159, represents the price of the fourth instrument (4% fixed-rate note); the sixth element, 6.2831 , represents the price of the sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(BDTInstSet, 'FieldName','Name')
InstNames =
10% Bond
10% Bond
Option 95
10% Fixed
20BP Float
15% Cap
9% Floor
15%/10BP Swap
```

Consequently, in the Price vector, the fourth element, 95.5030, represents the price of the fourth instrument (10% fixed-rate note); the sixth element, 1.4863 , represents the price of the sixth instrument (15% cap).

Price Tree Structure Output

If you call a pricing function with two output arguments, for example,

```
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet)
```

you generate a price tree along with the price information.
The optional output price tree structure PriceTree holds all the pricing information.

HJM Price Tree. In the HJM example, the first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PBush, is the tree holding the price of the instruments in each node of the tree. The third field, AIBush, is the tree holding the accrued interest of the instruments in each node of the tree. Finally, the fourth field, tObs, represents the observation time of each level of PBush and AIBush, with units in terms of compounding periods.

In this example, the price tree looks like

```
PriceTree =
FinObj: 'HJMPriceTree'
    PBush: {[8x1 double] [8x1\times2 double] ...[8x8 double]}
AIBush: {[8x1 double] [8x1x2 double] ... [8x8 double]}
    tObs: [00 1 2 3 4]
```

Both PBush and AIBush are 1-by-5 cell arrays, consistent with the five observation times of tObs. The data display has been shortened here to fit on a single line.

Using the command line interface, you can directly examine PriceTree.PBush, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents $\mathrm{t} 0 \mathrm{bs}=0$, corresponding to the valuation date.

```
PriceTree.PBush{1}
```

ans =
98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

BDT Price Tree. The BDT output price tree structure PriceTree holds all the pricing information. The first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PTree, is the tree holding the price of the instruments in each node of the tree. The third field, AITree, is the tree holding the accrued interest of the instruments in each node of the tree. The fourth field, tObs, represents the observation time of each level of PTree and AITree, with units in terms of compounding periods.

You can directly examine the field within the PriceTree structure, which contains the price tree with the price vectors at every state. The first node represents tObs $=0$, corresponding to the valuation date.

```
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)
PriceTree.PTree{1}
ans =
```

 95.5030
 93.9079
 1.7657
 95.5030
 100.4865
 1.4863
 0.0245
 7.4222

Computing Instrument Sensitivities

Sensitivities can be reported either as dollar price changes or percentage price changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega sensitivities of instruments using an interest-rate tree. They also optionally return the calculated price for each instrument. The sensitivity functions require the same two input arguments used by the pricing functions (HJMTree and HJMInstSet for HJM; BDTTree and BDTInstSet for BDT).

Sensitivity functions calculate the dollar value of delta and gamma by shifting the observed forward yield curve by 100 basis points in each direction, and the dollar value of vega by shifting the volatility process by 1%. To obtain the per-dollar value of the sensitivities, divide the dollar sensitivity by the price of the corresponding instrument.

HJM Sensitivities Example

The calling syntax for the function is:
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)
Use the previous example data to calculate the price of instruments.

```
load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
```

Note The warning appears because some of the cash flows for the second bond do not fall exactly on a tree node.

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

All =			
-272.65	1029.90	0.00	98.72
-347.43	1622.69	-0.04	97.53
-8.08	643.40	34.07	0.05
-272.65	1029.90	0.00	98.72
-1.04	3.31	0	100.55
294.97	6852.56	93.69	6.28
-47.16	8459.99	93.69	0.05
-282.05	1059.68	0.00	3.69

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in HJMInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

BDT Sensitivities Example

The calling syntax for the function is:
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);
Arrange the sensitivities and prices into a single matrix.

All =			
-232.67	803.71	-0.00	95.50
-281.05	1181.93	-0.01	93.91
-50.54	246.02	5.31	1.77
-232.67	803.71	0	95.50
0.84	2.45	0	100.49
78.38	748.98	13.54	1.49
-4.36	382.06	2.50	0.02
-253.23	863.81	0	7.42

To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

All =			
-2.44	8.42	-0.00	95.50
-2.99	12.59	-0.00	93.91
-28.63	139.34	3.01	1.77
-2.44	8.42	0	95.50
0.01	0.02	0	100.49
52.73	503.92	9.11	1.49
-177.89	15577.42	101.87	0.02
-34.12	116.38	0	7.42

Interest Rate Derivatives Using Closed Form Solutions

Pricing Caps and Floors Using the Black Option Model

Caps and floors are contracts that allow the holder to be protected if interest rates rise or decrease. The Black model uses a forward price as an underlier in place of a spot price. The assumption is that the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for pricing caps and floors using the Black model support the following tasks:

Task	Function
Price the interest rate caps using the Black option pricing model.	capbyblk
Price the interest rate floors using the Black option pricing model.	floorbyblk

Graphical Representation of Trees

In this section...
"Introduction" on page 2-68
"Observing Interest Rates" on page 2-68
"Observing Instrument Prices" on page 2-72

Introduction

You can use the function treeviewer to display a graphical representation of a tree, allowing you to examine interactively the prices and rates on the nodes of the tree until maturity. To get started with this process, first load the data file deriv.mat included in this toolbox.

```
load deriv.mat
```

Note treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely, for interest rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).

For information on the use of treeviewer to observe interest rate movement, see "Observing Interest Rates" on page 2-68. For information on using treeviewer to observe the movement of prices, see "Observing Instrument Prices" on page 2-72.

Observing Interest Rates

If you provide the name of an interest rate tree to the treeviewer function, it displays a graphical view of the path of interest rates. For example, here is the treeviewer representation of all the rates along both the up and down branches of HJMTree.

```
treeviewer(HJMTree)
```


The example in "Isolating a Specific Node for a CRRTree" on page 3-19 used bushpath to find the path of forward rates along an HJM tree by taking the first branch up and then two branches down the rate tree.

```
FRates = bushpath(HJMTree.FwdTree, [1 2 2])
FRates =
```

 1.0356
 1.0364
 1.0526
 1.0674
 With the treeviewer function you can display the identical information by clicking along the same sequence of nodes, as shown next.

Next is a treeviewer representation of interest rates along several branches of BDTTree.
treeviewer(BDTTree)

Note When using treeviewer with recombining trees, such as BDT, BK, and HW, you must click each node in succession from the beginning to the end. Because these trees can recombine, treeviewer is unable to complete the path automatically.

The example in "Isolating a Specific Node for a CRRTree" on page 3-19 used treepath to find the path of interest rates taking the first branch up and then two branches down the rate tree.

```
FRates = treepath(BDTTree.FwdTree, [1 2 2])
FRates =
```

1.1000
1.0979
1.1377
1.1606

You can display the identical information by clicking along the same sequence of nodes, as shown next.

Observing Instrument Prices

To use treeviewer to display a tree of instrument prices, provide the name of an instrument set along with the name of a price tree in your call to treeviewer, for example:

```
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)
```

With treeviewer you select each instrument individually in the instrument portfolio for display.

You can use an analogous process to view instrument prices based on the BDT interest rate tree included in deriv.mat.
load deriv.mat
[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet); treeviewer(BDTPriceTree, BDTInstSet)

Valuation Date Prices

You can use treeviewer instrument-by-instrument to observe instrument prices through time. For the first 4% bond in the HJM instrument portfolio, treeviewer indicates a valuation date price of 98.72 , the same value obtained by accessing the PriceTree structure directly.

As a further example, look at the sixth instrument in the price vector, the 3\% cap. At the valuation date, its value obtained directly from the structure is 6.2831. Use treeviewer on this instrument to confirm this price.

Additional Observation Times

The second node represents the first-rate observation time, t0bs = 1. This node displays two states, one representing the branch going up and the other one representing the branch going down.

Examine the prices of the node corresponding to the up branch.

```
ans =
    100.1563
        99.7309
            0.1007
    100.1563
    100.3782
        3.2594
        0.1007
        3.5597
```

PriceTree.PBush\{2\}(:,:,1)

As before, you can use treeviewer, this time to examine the price for the 4% bond on the up branch. treeviewer displays a price of 100.2 for the first node of the up branch, as expected.

Now examine the corresponding down branch.

```
PriceTree.PBush{2}(:,:,2)
ans =
    96.3041
    94.1986
            0
        96.3041
        100.3671
            8.6342
            0
            -0.3923
```

Use treeviewer once again, now to observe the price of the 4% bond on the down branch. The displayed price of 96.3 conforms to the price obtained from direct access of the PriceTree structure. You may continue this process as far along the price tree as you want.

Equity Derivatives

- "Understanding Equity Trees" on page 3-2
- "Understanding Equity Exotic Options" on page 3-22
- "Computing Prices and Sensitivities for Equity Derivatives Using Trees" on page 3-31
- "Equity Derivatives Using Closed-Form Solutions" on page 3-49

Understanding Equity Trees

In this section...
"Introduction" on page 3-2
"Building Equity Binary Trees" on page 3-3
"Building Implied Trinomial Trees" on page 3-8
"Examining Equity Trees" on page 3-16
"Differences Between CRR and EQP Tree Structures" on page 3-20

Introduction

Financial Derivatives Toolbox software supports three types of recombining tree models to represent the evolution of stock prices:

- Cox-Ross-Rubinstein (CRR) model
- Equal probabilities (EQP) model
- Implied trinomial tree (ITT) model

For a discussion of recombining trees, see "Rate and Price Trees" on page 2-5.
The CRR, EQP, and ITT models are examples of discrete time models. A discrete time model divides time into discrete bits; prices can only be computed at these specific times.

The CRR model is one of the most common methods used to model the evolution of stock processes. The strength of the CRR model lies in its simplicity. It is a good model when dealing with many tree levels. The CRR model yields the correct expected value for each node of the tree and provides a good approximation for the corresponding local volatility. The approximation becomes better as the number of time steps represented in the tree is increased.

The EQP model is another discrete time model. It has the advantage of building a tree with the exact volatility in each tree node, even with small numbers of time steps. It also provides better results than CRR in some given trading environments, for example, when stock volatility is low and
interest rates are high. However, this additional precision causes increased complexity, which is reflected in the number of calculations required to build a tree.

The ITT model is a CRR-style implied trinomial tree which takes advantage of prices quoted from liquid options in the market with varying strikes and maturities to build a tree that more accurately represents the market. An ITT model is commonly used to price exotic options in such a way that they are consistent with the market prices of standard options.

Building Equity Binary Trees

The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over a given period of time. The MATLAB functions crrtree and eqptree create CRR trees and EQP trees respectively. These functions create an output tree structure along with information about the parameters used for creating the tree.

The functions crrtree and eqptree take three structures as input arguments:

- The stock parameter structure StockSpec
- The interest-rate term structure RateSpec
- The tree time layout structure TimeSpec

Calling Sequence for Equity Binary Trees

The calling syntax for crrtree is:

```
CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)
```

Similarly, the calling syntax for eqptree is:

```
EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)
```

Both functions require the structures StockSpec, RateSpec, and TimeSpec as input arguments:

- StockSpec is a structure that specifies parameters of the stock whose price evolution is represented by the tree. This structure, created using the
function stockspec, contains information such as the stock's original price, its volatility, and its dividend payment information.
- RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the function intenvset.
- TimeSpec is the tree time layout specification. Create these structures with the functions crrtimespec and eqptimespec. The structures contain information regarding the mapping of relevant dates into the tree structure, plus the number of time steps used for building the tree.

Specifying the Stock Structure for Equity Binary Trees

The structure StockSpec encapsulates the stock-specific information required for building the binary tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments and accepts up to three additional input arguments that depend on the existence and type of dividend payments.

The syntax for calling stockspec is:

```
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
```

where:

- Sigma is the decimal annual volatility of the underlying security.
- AssetPrice is the price of the stock at the valuation date.
- DividendType is a string specifying the type of dividend paid by the stock. Allowed values are cash, constant, or continuous.
- DividendAmounts has a value that depends on the specification of DividendType. For DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType constant, it is a vector of constant annualized dividend yields. For DividendType continuous, it is a scalar representing a continuously annualized dividend yield.
- ExDividendDates also has a value that depends on the nature of DividendType. For DividendType cash or constant, ExDividendDates is
vector of dividend dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Binary Tree

Consider a stock with a price of $\$ 100$ and an annual volatility of 15%. Assume that the stock pays three cash $\$ 5.00$ dividends on dates January 01, 2003; July 01, 2003; and January 01, 2004. You specify these parameters in MATLAB as:

```
Sigma = 0.15;
AssetPrice = 100;
DividendType = 'cash';
DividendAmounts = [5; 5; 5];
ExDividendDates = {'jan-01-2004', 'july-01-2005', 'jan-01-2006'};
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
                FinObj: 'StockSpec
                    Sigma: 0.1500
            AssetPrice: 100
            DividendType: 'cash'
    DividendAmounts: [3\times1 double]
    ExDividendDates: [3x1 double]
```


Specifying the Interest-Rate Term Structure for Equity Binary Trees

The RateSpec structure defines the interest rate environment used when building the stock price binary tree. "Functions That Model the Interest-Rate Term Structure" on page 2-18 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Equity Binary Trees

The TimeSpec structure defines the tree layout of the binary tree:

- It maps the valuation and maturity dates to their corresponding times.
- It defines the time of the levels of the tree by dividing the time span between valuation and maturity into equally spaced intervals. By specifying the number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

```
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)
```

where:

- ValuationDate is a scalar date marking the pricing date and first observation in the tree (location of the root node). You enter ValuationDate either as a serial date number (generated with datenum) or a date string.
- Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a date string.
- NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods $=10$ implies 10 time steps and 11 tree levels (0,1 , $2, \ldots, 9,10$).

TimeSpec Example Using a Binary Tree

Consider building a CRR tree, with a valuation date of January 1, 2003, a maturity date of January 1, 2008, and 20 time steps. You specify these parameters in MATLAB as:

```
ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
NumPeriods = 20;
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec =
            FinObj: 'BinTimeSpec'
ValuationDate: 731582
            Maturity: 733408
    NumPeriods: 20
            Basis: 0
    EndMonthRule: 1
        tObs: [1x21 double]
```

```
dObs: [1x21 double]
```

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two fields represent the observation times and corresponding dates of all tree levels, with dObs (1) and tObs (1), respectively, representing the root node (ValuationDate), and dObs (end) and tObs(end) representing the last tree level (Maturity).

Note There is no relationship between the dates specified for the tree and the implied tree level times, and the maturities specified in the interest rate term structure. The rates in RateSpec are interpolated or extrapolated as required to meet the time distribution of the tree.

Examples of Binary Tree Creation

You can now use the StockSpec and TimeSpec structures described previously to build an equal probability tree (EQPTree) and a CRR tree (CRRTree). First, you must define the interest rate term structure. For this example, assume that the interest rate is fixed at 10% annually between the valuation date of the tree (January 1, 2003) until its maturity.

```
ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
Rate = 0.1;
RateSpec = intenvset('Rates', Rate, 'StartDates', ...
ValuationDate, 'EndDates', Maturity, 'Compounding', -1);
```

To build a CRRTree, enter:

```
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)
CRRTree =
    FinObj: 'BinStockTree'
    Method: 'CRR'
StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
    tObs: [1x21 double]
```

dObs: $[1 \times 21$ double $]$
STree: $\{1 \times 21$ cell $\}$
UpProbs: $[1 \times 20$ double $]$

To build an EQPTree, enter:

```
EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)
EQPTree =
    FinObj: 'BinStockTree'
    Method: 'EQP'
    StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
            tObs: [1x21 double]
            dObs: [1x21 double]
            STree: {1x21 cell}
        UpProbs: [1x20 double]
```


Building Implied Trinomial Trees

The tree of stock prices is the fundamental unit representing the evolution of the price of a stock over a given period of time. The MATLAB function itttree creates an output tree structure along with the information about the parameters used to create the tree.

The function itttree takes four structures as input arguments:

- The stock parameter structure StockSpec
- The interest-rate term structure RateSpec
- The tree time layout structure TimeSpec
- The stock option specification structure StockOptSpec

Calling Sequence for Implied Trinomial Trees

The calling syntax for itttree is:

```
ITTTree = itttree (StockSpec,RateSpec,TimeSpec,StockOptSpec)
```

- StockSpec is a structure that specifies parameters of the stock whose price evolution is represented by the tree. This structure, created using the function stockspec, contains information such as the stock's original price, its volatility, and its dividend payment information.
- RateSpec is the interest-rate specification of the initial rate curve. Create this structure with the function intenvset.
- TimeSpec is the tree time layout specification. Create these structures with the function itttimespec. This structure contains information regarding the mapping of relevant dates into the tree structure, plus the number of time steps used for building the tree.
- StockOptSpec is a structure containing parameters of European stock options instruments. Create this structure with the function stockoptspec.

Specifying the Stock Structure for Implied Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for building the trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input arguments and accepts up to three additional input arguments that depend on the existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... DividendAmounts, ExDividendDates)
where:

- Sigma is the decimal annual volatility of the underlying security.
- AssetPrice is the price of the stock at the valuation date.
- DividendType is a string specifying the type of dividend paid by the stock. Allowed values are cash, constant, or continuous.
- DividendAmounts has a value that depends on the specification of DividendType. For DividendType cash, DividendAmounts is a vector of cash dividends. For DividendType constant, it is a vector of constant
annualized dividend yields. For DividendType continuous, it is a scalar representing a continuously annualized dividend yield.
- ExDividendDates also has a value that depends on the nature of DividendType. For DividendType cash or constant, ExDividendDates is vector of dividend dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using an Implied Trinomial Tree

Consider a stock with a price of $\$ 100$ and an annual volatility of 12%. Assume that the stock is expected to pay a dividend yield of 6%. You specify these parameters in MATLAB as:

```
So=100;
DividendYield = 0.06;
Sigma=.12;
StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)
StockSpec =
            FinObj: 'StockSpec'
                Sigma: 0.1200
            AssetPrice: 100
        DividendType: 'continuous'
    DividendAmounts: 0.0600
    ExDividendDates: []
```


Specifying the Interest-Rate Term Structure for Implied Trinomial Trees

The structure RateSpec defines the interest rate environment used when building the stock price binary tree. "Functions That Model the Interest-Rate Term Structure" on page 2-18 explains how to create these structures using the function intenvset, given the interest rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Implied Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

- It maps the valuation and maturity dates to their corresponding times.
- It defines the time of the levels of the tree by dividing the time span between valuation and maturity into equally spaced intervals. By specifying the number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:
TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)
where:

- ValuationDate is a scalar date marking the pricing date and first observation in the tree (location of the root node). You enter ValuationDate either as a serial date number (generated with datenum) or a date string.
- Maturity is a scalar date marking the maturity of the tree, entered as a serial date number or a date string.
- NumPeriods is a scalar defining the number of time steps in the tree; for example, NumPeriods $=10$ implies 10 time steps and 11 tree levels (0,1 , $2, \ldots, 9,10$).

TimeSpec Example Using an Implied Trinomial Tree

Consider building an ITT tree, with a valuation date of January 1, 2006, a maturity date of January 1, 2008, and four time steps. You specify these parameters in MATLAB as:

```
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)
TimeSpec =
    FinObj: 'ITTTimeSpec'
```

```
ValuationDate: 732678
            Maturity: 733408
    NumPeriods: 4
        Basis: 0
EndMonthRule: 1
    tObs: [0 0.5000 1 1.5000 2]
    dObs: [732678 732860 733043 733225 733408]
```

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs. These two fields represent the observation times and corresponding dates of all tree levels, with dObs (1) and tObs(1), respectively, representing the root node (ValuationDate), and dObs (end) and tObs (end) representing the last tree level (Maturity).

Specifying the Option Stock Structure for Implied Trinomial Trees

The StockOptSpec structure encapsulates the option-stock-specific information required for building the implied trinomial tree. You generate StockOptSpec with the function stockoptspec. This function requires five input arguments. An optional sixth argument InterpMethod, specifying the interpolation method, can be included. The syntax for calling stockoptspec is:

```
[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
```

where:

- Optprice is a NINST-by-1 vector of European option prices.
- Strike is a NINST-by-1 vector of strike prices.
- Settle is a scalar date marking the settlement date.
- Maturity is a NINST-by-1 vector of maturity dates.
- OptSpec is a NINST-by-1 cell array of strings 'call' or 'put'.

Option Stock Structure Example Using an Implied Trinomial Tree

Consider the following data quoted from liquid options in the market with varying strikes and maturity. You specify these parameters in MATLAB as:

```
Settle = '01/01/06';
Maturity = ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];
Strike = [113;
    101;
    100;
    88;
    128;
    112;
    100;
    78;
    144;
    112;
    100;
    69;
    162;
    112;
    100;
    61];
OptPrice =[ 0;
    4.807905472659144;
    1.306321897011867;
    0.048039195057173;
```

```
                                    0;
    2.310953054191461;
    1.421950392866235;
    0.020414826276740;
                                    0;
    5.091986935627730;
    1.346534812295291;
    0.005101325584140;
        0;
    8.047628153217246;
    1.219653432150932;
    0.001041436654748];
OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
StockOptSpec =
    FinObj: 'StockOptSpec'
    OptPrice: [16x1 double]
    Strike: [16x1 double]
    Settle: 732678
    Maturity: [16x1 double]
```

```
    OptSpec: {16x1 cell}
InterpMethod: 'price'
```

Note The algorithm for building the ITT tree requires specifying option prices for all tree nodes. The maturities of those options correspond to those of the tree levels, and the strike to the prices on the tree nodes. The types of option are Calls for the nodes above the central nodes, and Puts for those below and including the central nodes.

Clearly, all these options will not be available in the market, hence making interpolation and extrapolation necessary to obtain the node option prices. The degree to which the tree reflects the market will unavoidably be tied to the results of these interpolations and extrapolations. Keeping in mind that extrapolation is less accurate than interpolation, and more so the further away the extrapolated points are from the data points, the function itttree issues a warning with a list of the options for which extrapolation was necessary.

In some cases, it may be desirable to view a list of ideal option prices to form an idea of the ranges needed. This can be achieved by calling the function itttree specifying only the first three input arguments. The second output argument is a structure array containing the list of ideal options needed.

Creating an Implied Trinomial Tree

You can now use the StockSpec, TimeSpec, and StockOptSpec structures described in "Stock Structure Example Using an Implied Trinomial Tree" on page 3-10, "TimeSpec Example Using an Implied Trinomial Tree" on page 3-11, and "Option Stock Structure Example Using an Implied Trinomial Tree" on page 3-12 to build an implied trinomial tree (ITT). First, you must define the interest rate term structure. For this example, assume that the interest rate is fixed at 8% annually between the valuation date of the tree (January $1,2006)$ until its maturity.

```
Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);
```

To build an ITTTree, enter:

```
ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)
ITTTree =
            FinObj: 'ITStockTree'
    StockSpec: [1x1 struct]
StockOptSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
            tObs: [0 0.500000000000000 1 1.500000000000000 2]
            dObs: [732678 732860 733043 733225 733408]
            STree: {1x5 cell}
            Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}
```


Examining Equity Trees

Financial Derivatives Toolbox software uses equity binary and implied trinomial trees to represent prices of equity options and of underlying stocks. At the highest level, these trees have structures wrapped around them. The structures encapsulate information required to interpret information in the tree.

To examine an equity binary or trinomial tree, load the data in the MAT-file deriv.mat into the MATLAB workspace.

```
load deriv.mat
```

Display the list of variables loaded from the MAT-file with the whos command.

Name	Size	Bytes	Class
BDTInstSet	1×1	15956	struct
BDTTree	1×1	5138	struct
BKInstSet	1×1	15946	struct
BKTree	1×1	5904	struct
CRRInstSet	1×1	12434	struct
CRRTree	1×1	5058	struct
EQPInstSet	1×1	12434	struct

EQPTree	1×1	5058	struct
HJMInstSet	1×1	15948	struct
HJMTree	1×1	5838	struct
HWInstSet	1×1	15946	struct
HWTree	1×1	5904	struct
ITTInstSet	1×1	12438	struct
ITTTree	1×1	8862	struct
ZeroInstSet	1×1	10282	struct
ZeroRateSpec	1×1	1580	struct

Examining a CRRTree

You can examine in some detail the contents of the CRRTree structure contained in this file.

```
CRRTree
    FinObj: 'BinStockTree'
    Method: 'CRR'
StockSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [731582 731947 732313 732678 733043]
        STree: {[100] [110.5171 90.4837] [122.1403 100 81.8731]
            [1\times4 double] [1\times5 double]}
        UpProbs: [0.7309 0.7309 0.7309 0.7309]
```

The Method field of the structure indicates that this is a CRR tree, not an EQP tree.

The fields StockSpec, TimeSpec and RateSpec hold the original structures passed into the function crrtree. They contain all the context information required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and dates, the times and dates of the levels of the tree. In this particular case, tObs reveals that the tree has a maturity of 4 years (tObs (end) $=4$) and that it has four time steps (the length of tobs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of 1 day. This means that all values in tObs that correspond to a given day from 00:00 hours to 24:00 hours are mapped to the corresponding value in dObs. You can use the function datestr to convert these MATLAB serial dates into their string representations.

The field UpProbs is a vector representing the probabilities for up movements from any node in each level. This vector has 1 element per tree level. All nodes for a given level have the same probability of an up movement. In the specific case being examined, the probability of an up movement is 0.7309 for all levels, and the probability for a down movement is $0.2691(1-0.7309)$.

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a cell array with each cell array element containing a vector of prices corresponding to a tree level. The prices are in descending order, that is, CRRTree.STree\{3\} (1) represents the topmost element of the third level of the tree, and CRRTree.STree\{3\} (end) represents the bottom element of the same level of the tree.

Examining an ITTTree

You can examine in some detail the contents of the ITTTree structure contained in this file.

```
TTTree =
```



```
        Probs: {[3\times1 double] [3\times3 double] [3\times5 double] [3\times7 double]}
```

The fields StockSpec, StockOptSpec, TimeSpec, and RateSpec hold the original structures passed into the function itttree. They contain all the context information required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and dates, the times and dates of the levels of the tree. In this particular case, tObs reveals that the tree has a maturity of 4 years (tObs (end) $=4$) and that it has four time steps (the length of tobs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of 1 day. This means that all values in tObs that correspond to a given day from 00:00 hours to 24:00 hours are mapped to the corresponding value in dObs. You can use the function datestr to convert these MATLAB serial dates into their string representations.

The field Probs is a vector representing the probabilities for movements from any node in each level. This vector has three elements per tree node. In the specific case being examined, at tObs=1, the probability for an up movement is 0.4675 , and the probability for a down movement is 0.1934 .

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a cell array with each cell array element containing a vector of prices corresponding to a tree level. The prices are in descending order, that is, ITTTree.STree\{4\} (1) represents the top element of the fourth level of the tree, and ITTTree.STree\{4\} (end) represents the bottom element of the same level of the tree.

Isolating a Specific Node for a CRRTree

The function treepath can isolate a specific set of nodes of a binary tree by specifying the path used to reach the final node. As an example, consider the nodes touched by starting from the root node, then following a down movement, then an up movement, and finally a down movement. You use a vector to specify the path, with 1 corresponding to an up movement and 2 corresponding to a down movement. An up-down-up path is then represented as [lll $\left.\begin{array}{lll}2 & 1 & 2\end{array}\right]$. To obtain the values of all nodes touched by this path, enter:

SVals = treepath(CRRTree.STree, [2 2 1 2$])$

SVals =
100.0000
90.4837
100.0000

The first value in the vector SVals corresponds to the root node, and the last value corresponds to the final node reached by following the path indicated.

Isolating a Specific Node for an ITTTree

The function trintreepath can isolate a specific set of nodes of a trinomial tree by specifying the path used to reach the final node. As an example, consider the nodes touched by starting from the root node, then following an up movement, then a middle movement, and finally a down movement. You use a vector to specify the path, with 1 corresponding to an up movement, 2 corresponding to a middle movement, and 3 corresponding to a down movement. An up-down-middle-down path is then represented as [$\left.\begin{array}{llll}1 & 3 & 2 & 3\end{array}\right]$. To obtain the values of all nodes touched by this path, enter:

```
pathSVals = trintreepath(ITTTree, [\begin{array}{llll}{1}&{3}&{2}&{3}\end{array}])
pathSVals =
```

50.0000
66.3448
50.0000
50.0000
37.6819

The first value in the vector pathSVals corresponds to the root node, and the last value corresponds to the final node reached by following the path indicated.

Differences Between CRR and EQP Tree Structures

In essence, the structures representing CRR trees and EQP trees are similar. If you create a CRR or an EQP tree using identical input arguments, only a few of the tree structure fields differ:

- The Method field has a value of 'CRR' or 'EQP' indicating the method used to build the structure.
- The prices in the STree cell array have the same structure, but the prices within the cell array are different.
- For EQP, the structure field UpProb always holds a vector with all elements set to 0.5 , while for CRR, these probabilities are calculated based on the input arguments passed when building the tree.

Understanding Equity Exotic Options

In this section...

"Introduction" on page 3-22
"Asian Option" on page 3-22
"Barrier Option" on page 3-23
"Basket Option" on page 3-25
"Compound Option" on page 3-26
"Lookback Option" on page 3-27
"Digital Option" on page 3-28
"Rainbow Option" on page 3-29
"Bermuda Put and Call Schedule" on page 3-30

Introduction

Financial Derivatives Toolbox software supports eight types of equity exotic options. Support for all of these equity exotic option types additionally includes American and European puts and calls.

Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value of the underlying asset during the life (or some part of the life) of the option. They are similar to lookback options in that there are two types of Asian options: fixed (average price option) and floating (average strike option). Fixed Asian options have a specified strike, while floating Asian options have a strike equal to the average value of the underlying asset over the life of the option.

There are four Asian options types, each with its own characteristic payoff formula:

- Fixed call: $\max \left(0, S_{a v}-X\right)$
- Fixed put: $\max \left(0, X-S_{a v}\right)$
- Floating call: $\max \left(0, S-S_{a v}\right)$
- Floating put: $\max \left(0, S_{a v}-S\right)$
where:
$S_{a v}$ is the average price of underlying stock found along the particular path followed to the node.
S is the price of the underlying stock on the node.
X is the strike price (applicable only to fixed Asian options).
$S_{a v i s ~ d e f i n e d ~ u s i n g ~ e i t h e r ~ a ~ g e o m e t r i c ~ o r ~ a n ~ a r i t h m e t i c ~ a v e r a g e . ~}^{\text {. }}$
The following functions support Asian options

Function	Purpose
asianbycrr	Price Asian option from a CRR binomial tree.
asianbyeqp	Price Asian option from an EQP binomial tree.
asianbyitt	Price Asian options using an implied trinomial tree (ITT).
instasian	Construct an Asian option.

Barrier Option

A barrier option is similar to a vanilla put or call option, but its life either begins or ends when the price of the underlying stock passes a predetermined barrier value. There are four types of barrier options.

Up Knock-In

This option becomes effective when the price of the underlying stock passes above a barrier that is above the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of the underlying instrument moves below the barrier again.

Up Knock-Out

This option terminates when the price of the underlying stock passes above a barrier that is above the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the underlying instrument moves below the barrier again.

Down Knock-In

This option becomes effective when the price of the underlying stock passes below a barrier that is below the initial stock price. Once the barrier has knocked in, it will not knock out even if the price of the underlying instrument moves above the barrier again.

Down Knock-Out

This option terminates when the price of the underlying stock passes below a barrier that is below the initial stock price. Once the barrier has knocked out, it will not knock in even if the price of the underlying instrument moves above the barrier again.

Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option. Knock-outs may pay a rebate when they are knocked out, and knock-ins may pay a rebate if they expire without ever knocking in.

The following functions support barrier options.

Function	Purpose
barrierbycrr	Price barrier option from a CRR binomial tree.
barrierbyeqp	Price barrier option from an EQP binomial tree.
barrierbyitt	Price barrier options using an implied trinomial tree (ITT).
instbarrier	Construct a barrier option.

Basket Option

A basket option is an option on a portfolio of several underlying assets. Payout for a basket option depends on the cumulative performance of the collection of the individual assets. A basket option tends to be cheaper than the corresponding portfolio of plain vanilla options for these reasons:

- If the basket components correlate negatively, movements in the value of one component neutralize opposite movements of another component. Unless all the components correlate perfectly, the basket option is cheaper than a series of individual options on each of the assets in the basket.
- A basket option minimizes transaction costs because an investor has to purchase only one option instead of several individual options.

The payoff for a basket option is as follows:

- For a call: $\max \left(\sum W i * S i-K ; 0\right)$
- For a put: $\max \left(\sum K-W i * S i ; 0\right)$
where:
$S i$ is the price of asset i in the basket.
$W i$ is the quantity of asset i in the basket.
K is the strike price.
The following functions support basket options.

Function	Purpose
basketbyls	Price basket options using the Longstaff-Schwartz model.
basketsensbyls	Calculate price and sensitivities for basket options using the Longstaff-Schwartz model.
basketbyju	Price European basket options using the Nengjiu Ju approximation model.

Function	Purpose
basketsensbyju	Calculate European basket options price and sensitivity using the Nengjiu Ju approximation model.
basketstockspec	Specify basket stock structure.

Compound Option

A compound option is basically an option on an option; it gives the holder the right to buy or sell another option. With a compound option, a vanilla stock option serves as the underlying instrument. Compound options thus have two strike prices and two exercise dates.

There are four types of compound options:

- Call on a call
- Put on a put
- Call on a put
- Put on a call

Note The payoff formulas for compound options are too complex for this discussion. If you are interested in the details, consult the paper by Mark Rubinstein entitled "Double Trouble," published in Risk 5 (1991).

Consider the third type, a call on a put. It gives the holder the right to buy a put option. In this case, on the first exercise date, the holder of the compound option is allowed to pay the first strike price and receive a put option. The put option gives the holder the right to sell the underlying asset for the second strike price on the second exercise date.

The following functions support compound options

Function	Purpose
compoundbycrr	Price compound option from a CRR binomial tree.

Function	Purpose
compoundbyeqp	Price compound option from an EQP binomial tree.
compoundbyitt	Price compound options using an implied trinomial tree (ITT).
instcompound	Construct a compound option.

Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value the underlying asset achieves during the entire life of the option.

Financial Derivatives Toolbox software supports two types of lookback options: fixed and floating. Fixed lookback options have a specified strike price, while floating lookback options have a strike price determined by the asset path. Consequently, there are a total of four lookback option types, each with its own characteristic payoff formula:

- Fixed call: $\max \left(0, S_{\max }-X\right)$
- Fixed put: $\max \left(0, X-S_{\min }\right)$
- Floating call: $\max \left(0, S-S_{\min }\right)$
- Floating put: $\max \left(0, S_{\max }-S\right)$
where:
$S_{\max }$ is the maximum price of underlying stock found along the particular path followed to the node.
$S_{\min }$ is the minimum price of underlying stock found along the particular path followed to the node.
S is the price of the underlying stock on the node.
X is the strike price (applicable only to fixed lookback options).

The following functions support compound options

Function	Purpose
lookbackbycrr	Price lookback option from a CRR binomial tree.
lookbackbyeqp	Price lookback option from an EQP binomial tree.
lookbackbyitt	Price lookback options using an implied trinomial tree (ITT).
instlookback	Construct a lookback option.

Digital Option

A digital option is an option whose payoff is characterized as having only two potential values: a fixed payout, when the option is in the money or a zero payout otherwise. This is the case irrespective of how far the asset price at maturity is above (call) or below (put) the strike.

Digital options are attractive to sellers because they guarantee a known maximum loss in the event that the option is exercised. This overcomes a fundamental problem with the vanilla options, where the potential loss is unlimited. Digital options are attractive to buyers because the option payoff is a known constant amount, and this amount can be adjusted to provide the exact quantity of protection required.

Financial Derivatives Toolbox software supports four types of digital options:

- Cash-or-nothing option - Pays some fixed amount of cash if the option expires in the money.
- Asset-or-nothing option - Pays the value of the underlying security if the option expires in the money.
- Gap option - One strike decides if the option is in or out of money; another strike decides the size the size of the payoff.
- Supershare - Pays out a proportion of the assets underlying a portfolio if the asset lies between a lower and an upper bound at the expiry of the option.

Financial Derivatives Toolbox supports the following functions to calculate pricing and sensitivity for digital options.

Function	Purpose
cashbybls	Calculate the price of cash-or-nothing digital options using the Black-Scholes model.
assetbybls	Calculate the price of asset-or-nothing digital options using the Black-Scholes model. Calculate the price of gap digital options using the Black-Scholes model
gapbybls	Calculate the price of supershare digital options using the Black-Scholes model Calculate the price and sensitivities of cash-or-nothing digital options using the
supersharebybls	Black-Scholes model. Cashsensbybls asset-or-nothing digital options using the
assensbybls	Black-Scholes model. Calculate the price and sensitivities of gap digital options using the Black-Scholes model.
gapsensbybls	Calculate the price and sensitivities of supershare digital options using the
Black-Scholes model.	

Rainbow Option

A rainbow option payoff depends on the relative price performance of two or more assets. A rainbow option gives the holder the right to buy or sell the best or worst of two securities, or options that pay the best or worst of two assets.

Rainbow options are popular because of the lower premium cost of the structure relative to the purchase of two separate options. The lower cost reflects the fact that the payoff is generally lower than the payoff of the two separate options.

Financial Derivatives Toolbox software supports two types of rainbow options:

- Minimum of two assets - The option holder has the right to buy(sell) one of two risky assets, whichever one is worth less.
- Maximum of two assets - The option holder has the right to buy(sell) one of two risky assets, whichever one is worth more.

Financial Derivatives Toolbox supports the following Rainbow options for speculating/hedging on two equity assets.

Function	Purpose
minassetbystulz	Calculate the European rainbow option price on minimum of two risky assets using the Stulz option pricing model.
minassetsensbystulz	Calculate the European rainbow option prices and sensitivities on minimum of two risky assets using the Stulz pricing model.
maxassetbystulz	Calculate the European rainbow option price on maximum of two risky assets using the Stulz option pricing model.
maxassetsensbystulz	Calculate the European rainbow option prices and sensitivities on maximum of two risky assets using the Stulz pricing model.

Bermuda Put and Call Schedule

A Bermuda option is somewhat like a hybrid of American and European options. It can be exercised on predetermined dates only, usually once a month. In Financial Derivatives Toolbox software, the relevant information for a Bermuda option is indicated in two input matrices:

- Strike - Contains the strike price values for the option.
- ExcerciseDates - Contains the schedule when the option can be exercised.

Computing Prices and Sensitivities for Equity Derivatives Using Trees

In this section...
"Computing Instrument Prices" on page 3-31
"Computing Prices Using CRR" on page 3-33
"Computing Prices Using EQP" on page 3-35
"Computing Prices Using ITT" on page 3-37
"Examining Output from the Pricing Functions" on page 3-39
"Computing Instrument Sensitivities" on page 3-43
"Graphical Representation of CRR, EQP, and ITT Trees" on page 3-47

Computing Instrument Prices

The portfolio pricing functions crrprice, eqpprice, and ittprice calculate the price of any set of supported instruments based on a binary equity price tree or an implied trinomial price tree. These functions are capable of pricing the following instrument types:

- Vanilla stock options
- American and European puts and calls
- Exotic options
- Asian
- Barrier
- Compound
- Lookback
- Stock options (Bermuda put and call schedules)

The syntax for calling the function crrprice is:
[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

The syntax for eqpprice is:

```
[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)
```

The syntax for ittprice is:

```
Price = ittprice(ITTTree, ITTInstSet, Options)
```

These functions require two input arguments: the equity price tree and the set of instruments, InstSet, and allow a third optional argument.

Required Arguments

CRRTree is a CRR equity price tree created using crrtree. EQPTree is an equal probability equity price tree created using eqptree. ITTTree is an ITT equity price tree created using itttree. See "Building Equity Binary Trees" on page 3-3 and "Building Implied Trinomial Trees" on page 3-8 to learn how to create these structures.

InstSet is a structure that represents the set of instruments to be priced independently using the model. Chapter 1, "Getting Started", explains how to create this variable.

Optional Argument

You can enter a third optional argument, Options, used when pricing barrier options. For more specific information, see Appendix A, "Derivatives Pricing Options".

These pricing functions internally classify the instruments and call the appropriate individual instrument pricing function for each of the instrument types. The CRR pricing functions are asianbycrr, barrierbycrr, compoundbycrr, lookbackbycrr, and optstockbycrr. A similar set of functions exists for EQP and ITT pricing. You can also use these functions directly to calculate the price of sets of instruments of the same type. See the reference pages for these individual functions for further information.

Computing Prices Using CRR

Consider the following example, which uses the portfolio and stock price data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

```
load deriv.mat
```

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

Name	Size	Bytes	Class	Attributes
BDTInstSet	1×1	15956	struct	
BDTTree	1×1	5138	struct	
BKInstSet	1×1	15946	struct	
BKTree	1×1	5904	struct	
CRRInstSet	1×1	12434	struct	
CRRTree	1×1	5058	struct	
EQPInstSet	1×1	12434	struct	
EQPTree	1×1	5058	struct	
HJMInstSet	1×1	15948	struct	
HJMTree	1×1	5838	struct	
HWInstSet	1×1	15946	struct	
HWTree	1×1	5904	struct	
ITTInstSet	1×1	12438	struct	
ITTTree	1×1	8862	struct	
ZeroInstSet	1×1	10282	struct	
ZeroRateSpec	1×1	1580	struct	

CRRTree and CRRInstSet are the required input arguments to call the function crrprice.

Use instdisp to examine the set of instruments contained in the variable CRRInstSet.

```
instdisp(CRRInstSet)
```


Note Because of space considerations, the compound option above (Index 4) has been condensed to fit the page. The instdisp command displays all compound option fields on your computer screen.

The instrument set contains eight instruments:

- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument set.

```
Price = crrprice(CRRTree, CRRInstSet)
Price =
```

8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

Computing Prices Using EQP

Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

Name	Size	Bytes	Class	Attributes
BDTInstSet	1×1	15956	struct	
BDTTree	1×1	5138	struct	
BKInstSet	1×1	15946	struct	
BKTree	1×1	5904	struct	
CRRInstSet	1×1	12434	struct	
CRRTree	1×1	5058	struct	
EQPInstSet	1×1	12434	struct	
EQPTree	1×1	5058	struct	
HJMInstSet	1×1	15948	struct	
HJMTree	1×1	5838	struct	
HWInstSet	1×1	5946	struct	
HWTree	1×1	12438	struct	struct
ITTInstSet	1×1	8862	struct	
ITTTree	1×1	10282	struct	
ZeroInstSet	1×1	1580	struct	

EQPTree and EQPInstSet are the input arguments required to call the function eqpprice.

Use the command instdisp to examine the set of instruments contained in the variable EQPInstSet.

```
instdisp(EQPInstSet)
```


Note Because of space considerations, the compound option above (Index 4) has been condensed to fit the page. The instdisp command displays all compound option fields on your computer screen.

The instrument set contains eight instruments:

- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by eqpprice.

Now use eqpprice to calculate the price of each instrument in the instrument set.

```
Price = eqpprice(EQPTree, EQPInstSet)
Price =
    8.4791
    2.6375
    12.2632
    3.5091
    8.7941
    12.9577
    4.7444
    3.9178
```


Computing Prices Using ITT

Consider the following example, which uses the portfolio and stock price data in the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

```
load deriv.mat
```

Use the MATLAB whos command to display a list of the variables loaded from the MAT-file.

Name	Size	Bytes	Class	Attributes
BDIInstSet	1×1	15956	struct	
BDTTree	1×1	5138	struct	
BKInstSet	1×1	15946	struct	
BKTree	1×1	5904	struct	
CRRInstSet	1×1	12434	struct	
CRRTree	1×1	5058	struct	
EQPInstSet	1×1	12434	struct	
EQPTree	1×1	5058	struct	
HJMInstSet	1×1	15948	struct	
HJMTree	1×1	5838	struct	
HWInstSet	1×1	15946	struct	
HWTree	1×1	5904	struct	
ITTInstSet	1×1	12438	struct	
ITTTree	1×1	8812	struct	
ZeroInstSet	1×1	10282	struct	

ZeroRateSpec $1 \times 1 \quad 1580$ struct

ITTTree and ITTInstSet are the input arguments required to call the function ittprice. Use the command instdisp to examine the set of instruments contained in the variable ITTInstSet.
instdisp(ITTInstSet)

```
Index Type OptSpec Strike Settle ExerciseDates Americanopt Name Quantity
1 OptStock call 95 01-Jan-2006
    OptStock put 80 01-Jan-2006
Index Type optspec strike settle
3 Barrier call 85 01-Jan-2006
    ExerciseDat
    1
    Call1 10
    01-Jan-2010 0 Put1 4
    ExerciseDates Americanopt Barrierspec Barrier Rebate Name Quantity
    31-Dec-2008 1 1 ui 
Index Type UOptSpec UStrike USettle UExerciseDates UAnericanOpt COptSpec CStrike CSettle CExerciseDates CMnericanOpt Nane Quantity
4 Compound call 99 01-Jan-2006
Index Type Optspec Strike Settle
    Lookback call 85 01-Jan-2006
    Lookback call 85 85 01-Jan-2006
Index Type OptSpec Strike Settle 
ExerciseDates Americanopt AvgType AvgPrice AvgDate Name Quantity
```


The instrument set contains eight instruments:

- Two vanilla options (Call1, Put1)
- One barrier option (Barrier1)
- One compound option (Compound1)
- Two lookback options (Lookback1, Lookback2)
- Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the price vector returned by ittprice.

Now use ittprice to calculate the price of each instrument in the instrument set.

```
Price = ittprice(ITTTree, ITTInstSet)
```

Price =
1.650
10.68
2.407
3.229
0.542
6.184
3.205
6.607

Examining Output from the Pricing Functions

The prices in the output vector Price correspond to the prices at observation time zero (tObs = 0), which is defined as the valuation date of the equity tree. The instrument indexing within Price is the same as the indexing within InstSet.

In the CRR example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(CRRInstSet, 'FieldName','Name')
InstNames =
Call1
Put1
Barrier1
Compound1
Lookback1
Lookback2
Asian1
Asian2
```

Consequently, in the Price vector, the fourth element, 3.3241, represents the price of the fourth instrument (Compound1), and the sixth element, 11.7772, represents the price of the sixth instrument (Lookback2).

In the ITT example, the prices in the Price vector correspond to the instruments in this order.

```
InstNames = instget(ITTInstSet, 'FieldName','Name')
InstNames =
```


Call1

Put1
Barrier1
Compound1
Lookback1
Lookback2
Asian1
Asian2
Consequently, in the Price vector, the first element, 1.650, represents the price of the first instrument (Call1), and the eight element, 6.607, represents the price of the eighth instrument (Asian2).

Price Tree Output for CRR

If you call a pricing function with two output arguments, for example:

```
[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)
```

you generate a price tree structure along with the price information.
This price tree structure PriceTree holds all pricing information.

```
PriceTree =
FinObj: 'BinPriceTree'
PTree: {[8x1 double] [8x2 double] [8x3 double] [8\times4 double] [8\times5 double]}
tObs: [0 1 2 2 3 4]
dObs: [731582 731947 732313 732678 733043]
```

The first field of this structure, FinObj, indicates that this structure represents a price tree. The second field, PTree, is the tree holding the prices of the instruments in each node of the tree. Finally, the third and fourth fields, tObs and dObs, represent the observation time and date of each level of PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree. PTree, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents tobs $=0$, corresponding to the valuation date.

PriceTree. PTree\{1\}
ans =
8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

The function eqpprice also returns a price tree that you can examine in the same way.

Price Tree Output for ITT

If you call a pricing function with two output arguments, for example:

```
[Price, PriceTree] = ittprice(ITTTree, ITTInstSet)
```

you generate a price tree structure along with the price information.
This price tree structure PriceTree holds all pricing information.

```
PriceTree =
    FinObj: 'TrinPriceTree'
    PTree: {[8x1 double] [8x3 double] [8x5 double] [8x7 double] [8x9 double]}
        tObs: [00 1 2 2 3 4]
        dObs: [732678 733043 733408 733773 734139]
```

The first field of this structure, FinObj, indicates that this structure represents a trinomial price tree. The second field, PTree is the tree holding the prices of the instruments in each node of the tree. Finally, the third and fourth fields, tObs and dObs, represent the observation time and date of each level of PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree. PTree, the field within the PriceTree structure that contains the price tree with the price vectors at every state. The first node represents tobs $=0$, corresponding to the valuation date.

```
PriceTree.PTree{1}
```

1.6506
10.6832
2.4074
3.2294
0.5426
6.1845
3.2052
6.6074

With this interface, you can observe the prices for all instruments in the portfolio at a specific time.

Prices for Lookback and Asian Options for Equity Trees

Lookback options and Asian options are path dependent, and, as such, there are no unique prices for any node except the root node. Consequently, the corresponding values for lookback and Asian options in the price tree are set to NaN, the only exception being the root node. This becomes apparent if you examine the prices in the second node (tobs $=1$) of the CRR price tree:
PriceTree. PTree $\{2\}$
ans =
11.9176
0.9508
16.4600
2.5896
NaN
NaN
NaN
NaN

Examining the prices in the second node (tobs $=1$) of the ITT price tree displays:

PriceTree.PTree\{2\}
ans $=$ 3.9022\quad 6.3736 13.3743 22.1915 5.6914 0 0 2.7663 3.8594 5.0000 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Computing Instrument Sensitivities

Sensitivities can be reported either as dollar price changes or percentage price changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar sensitivities.

The functions crrsens, eqpsens, and ittsens compute the delta, gamma, and vega sensitivities of instruments using a stock tree. They also optionally return the calculated price for each instrument. The sensitivity functions require the same two input arguments used by the pricing functions (CRRTree and CRRInstSet for CRR, EQPTree and EQPInstSet for EQP, andITTTree and ITTInstSet for ITT).

As with the instrument pricing functions, the optional input argument Options is also allowed. You would include this argument if you want a sensitivity function to generate a price for a barrier option as one of its outputs and want to control the method that the toolbox uses to perform the pricing operation. See Appendix A, "Derivatives Pricing Options" or the derivset function for more information.

For path-dependent options (lookback and Asian), delta and gamma are computed by finite differences in calls to crrprice, eqpprice, and ittprice. For the other options (stock option, barrier, and compound), delta and gamma are computed from the CRR, EQP, and ITT trees and the corresponding option price tree. (See Chriss, Neil, Black-Scholes and Beyond, pp. 308-312.)

CRR Sensitivities Example

The calling syntax for the sensitivity function is:
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)
Using the example data in deriv.mat, calculate the sensitivity of the instruments.

```
load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);
```

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

```
format bank
All = [Delta, Gamma, Vega, Price]
All =
```

0.59	0.04	53.45	8.29
-0.31	0.03	67.00	2.50
0.69	0.03	67.00	12.13
-0.12	-0.01	-98.08	3.32
-0.40	-45926.32	88.18	7.60
-0.42	-112143.15	119.19	11.78
0.60	45926.32	49.21	4.18
0.82	112143.15	41.71	3.42

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in CRRInstSet. To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding instrument price.

```
All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =
\begin{tabular}{rrrr}
0.07 & 0.00 & 6.45 & 8.29 \\
-0.12 & 0.01 & 26.78 & 2.50 \\
0.06 & 0.00 & 5.53 & 12.13 \\
-0.04 & -0.00 & -29.51 & 3.32
\end{tabular}
```

-0.05	-6041.77	11.60	7.60
-0.04	-9522.02	10.12	11.78
0.14	10987.98	11.77	4.18
0.24	32771.92	12.19	3.42

ITT Sensitivities Example

The calling syntax for the sensitivity function is:
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

```
load deriv.mat
warning('off', 'finderiv:itttree:Extrapolation');
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet);
```

You can conveniently examine the sensitivities and the prices by arranging them into a single matrix.

```
format bank
All = [Delta, Gamma, Vega, Price]
All =
```

0.24	0.03	19.35	1.65
-0.43	0.02	49.69	10.68
0.35	0.04	12.29	2.41
-0.07	0.00	6.73	3.23
0.63	142945.66	38.90	0.54
0.60	22703.21	68.92	6.18
0.32	-142945.66	18.48	3.21
0.67	-22703.21	17.75	6.61

As with the prices, each row of the sensitivity vectors corresponds to the similarly indexed instrument in ITTInstSet.

Note In this example, the extrapolation warnings are turned off before calculating the sensitivities to avoid displaying many warnings on the Command Window as the sensitivities are calculated.

If the extrapolation warnings are turned on

```
warning('on', 'finderiv:itttree:Extrapolation');
```

and ittsens is rerun, the extrapolation warnings scroll as the command executes:

```
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet)
Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This makes extrapolation necessary. The list of options outside of the
range of those specified in StockOptSpec are:
Option Type: 'call' Maturity: 01-Jan-2007 Strike=66.3529
Option Type: 'put' Maturity: 01-Jan-2007 Strike=50.0061
Option Type: 'put' Maturity: 01-Jan-2008 Strike=50.0061
Option Type: 'put' Maturity: 31-Dec-2008 Strike=50.0061
Option Type: 'call' Maturity: 01-Jan-2010 Strike=155.0141
Option Type: 'put' Maturity: 01-Jan-2010 Strike=50.006
> In itttree>InterpOptPrices at 675
    In itttree at 277
    In stocktreesens>stocktreedeltagamma_PD at 127
    In stocktreesens at }8
    In ittsens at 81
Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of the
range of those specified in StockOptSpec.
\begin{tabular}{lcc} 
Option Type: 'call' & Maturity: 01-Jan-2007 & Strike=66.3367 \\
Option Type: 'put' & Maturity: 01-Jan-2007 & Strike \(=37.6773\) \\
Option Type: 'call' & Maturity: 01-Jan-2008 & Strike \(=66.3367\) \\
Option Type: 'put' & Maturity: 01-Jan-2008 & Strike \(=28.3951\) \\
Option Type: 'call' & Maturity: 31-Dec-2008 & Strike=66.3367 \\
Option Type: 'call' & Maturity: 01-Jan-2010 & Strike \(=66.3367\)
\end{tabular}
```

```
Option Type: 'put' Maturity: 01-Jan-2010 Strike=16.1276
> In itttree>InterpOptPrices at 675
    In itttree at 277
    In stocktreesens>stocktreedeltagamma_PD at 131
    In stocktreesens at 83
    In ittsens at 81
```

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of the
range of those specified in StockOptSpec.

Op	M	Strike=67.2897
Option Type: 'put'	Maturity: 01-Jan-2007	Strike=37.1528
Option Type: 'put'	Maturity: 01-Jan-2008	Strike=27.6066
Option Type: 'put'	Maturity: 31-Dec-2008	Strike=20.5132
Option Type: 'call'	Maturity: 01-Jan-2010	Strike=164.01
Option Type: 'put	Maturity: 01-Jan-2010	Strike=15.2424

> In itttree>InterpOptPrices at 675
In itttree at 277
In stocktreesens>stocktreevega at 191
In stocktreesens at 92
In ittsens at 81

These warnings are a consequence of having to extrapolate to find the option price of the tree nodes. In this example, the set of inputs options was too narrow for the shift in the tree nodes introduced by the disturbance used to calculate the sensitivities. As a consequence extrapolation for some of the nodes was needed. Since the input data is quite close the extrapolated data, the error introduced by extrapolation is fairly low.

Graphical Representation of CRR, EQP, and ITT Trees

You can use the function treeviewer to display a graphical representation of a tree, allowing you to examine interactively the prices and rates on the nodes of the tree until maturity. The graphical representations of CRR and EQP trees are equivalent to Black-Derman-Toy (BDT) trees, given that they are all binary recombining trees. The graphical representations of ITT trees are equivalent to Hull-White (HW) trees, given that they are all trinomial
recombining trees. See "Graphical Representation of Trees" on page 2-68 for an overview on the use of treeviewer with CRR trees, EQP trees, and ITT trees and their corresponding option price trees. Follow the instructions for BDT trees.

Equity Derivatives Using Closed-Form Solutions

In this section...
"Introduction" on page 3-49
"Computing Prices and Sensitivities Using the Black-Scholes Model" on
page 3-53
"Computing Prices and Sensitivities Using the Black Model" on page 3-55
"Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model"
on page 3-56
"Computing Prices and Sensitivities Using the Bjerksund-Stensland Model"
on page 3-57

Introduction

Financial Derivatives Toolbox software supports four types of closed-form solutions and analytical approximations to calculate price and sensitivities (greeks) of vanilla options:

- Black-Scholes model
- Black model
- Roll-Geske-Whaley model
- Bjerksund-Stensland 2002 model

Black-Scholes Model

The Black-Scholes model is one of the most commonly used models to price European calls and puts. It serves as a basis for many closed-form solutions used for pricing options. The standard Black-Scholes model is based on the following assumptions:

- There are no dividends paid during the life of the option.
- The option can only be exercised at maturity.
- The markets operate under a Markov process in continuous time.
- No commissions are paid.
- The risk-free interest rate is known and constant.
- Returns on the underlying stocks are log-normally distributed.

Note The Black-Scholes model implemented in Financial Derivatives Toolbox software allows dividends. The following three dividend methods are supported:

- Cash dividend
- Continuous dividend yield
- Constant dividend yield

However, not all Black-Scholes closed-form pricing functions support all three dividend methods. For more information on specifying the dividend methods, see stockspec.

Closed-form solutions based on a Black-Scholes model support the following tasks.

Task	Function
Price European options with different dividends using the Black-Scholes option pricing model.	optstockbybls
Calculate European option prices and sensitivities using the Black-Scholes option pricing model.	optstocksensbybls
Calculate implied volatility on European options using the Black-Scholes option pricing model.	impvbybls
Price European simple chooser options using Black-Scholes model.	chooserbybls

For an example using the Black-Scholes model, see "Computing Prices and Sensitivities Using the Black-Scholes Model" on page 3-53.

Black Model

Use the Black model for pricing European options on physical commodities, forwards or futures. The Black model supported by Financial Derivatives Toolbox software is a special case of the Black-Scholes model. The Black model uses a forward price as an underlier in place of a spot price. The assumption is that the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for a Black model support the following tasks.

Task	Function
Price European options on futures using the Black option pricing model.	optstockbyblk
Calculate European option prices and sensitivities on futures using the Black option pricing model.	optstocksensbyblk
Calculate implied volatility for European options using the Black option pricing model.	impvbyblk

For an example using the Black model, see "Computing Prices and Sensitivities Using the Black Model" on page 3-55.

Roll-Geske-Whaley Model

Use the Roll-Geske-Whaley approximation method to price American call options paying a single cash dividend. This model is based on the modification of the observed stock price for the present value of the dividend and also supports a compound option to account for the possibility of early exercise. The Roll-Geske-Whaley model has drawbacks due to an escrowed dividend price approach which may lead to arbitrage. For further explanation, see Options, Futures, and Other Derivatives by John Hull.

Closed-form solutions for a Roll-Geske-Whaley model support the following tasks.

Task	Function
Price American call options with a single cash dividend using the Roll-Geske-Whaley option pricing model.	optstockbyrgw
Calculate American call prices and sensitivities using the Roll-Geske-Whaley option pricing model.	optstocksensbyrgw
Calculate implied volatility for American call options using the Roll-Geske-Whaley option pricing model.	impvbyrgw

For an example using the Roll-Geske-Whaley model, see "Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model" on page 3-56.

Bjerksund-Stensland 2002 Model

Use the Bjerksund-Stensland 2002 model for pricing American puts and calls with continuous dividend yield. This model works by dividing the time to maturity of the option in two separate parts, each with its own flat exercise boundary (trigger price). The Bjerksund-Stensland 2002 method is a generalization of the Bjerksund and Stensland 1993 method and is considered to be computationally efficient. For further explanation, see Closed Form Valuation of American Options by Bjerksund and Stensland.

Closed-form solutions for a Bjerksund-Stensland 2002 model support the following tasks.

Task	Function
Price American options with continuous dividend yield using the Bjerksund-Stensland 2002 option pricing model.	optstockbybjs

Task	Function
Calculate American options prices and sensitivities using the Bjerksund-Stensland 2002 option pricing model.	optstocksensbybjs
Calculate implied volatility for American options using the Bjerksund-Stensland 2002 option pricing model.	impvbybjs

For an example using the Bjerksund-Stensland 2002 model, see "Computing Prices and Sensitivities Using the Bjerksund-Stensland Model" on page 3-57.

Computing Prices and Sensitivities Using the Black-Scholes Model

Consider a European stock option with an exercise price of $\$ 40$ on January 1, 2008 that expires on July 1, 2008. Assume the underlying stock pays dividends of $\$ 0.50$ on March 1 and June 1. The stock is trading at $\$ 40$ and has a volatility of 30% per annum. The risk-free rate is 4% per annum. Using this data, calculate the price of a call and a put option on the stock using the Black-Scholes option pricing model:

```
Strike = 40;
AssetPrice = 40;
Sigma = .3;
Rates = 0.04;
Settle = 'Jan-01-08';
Maturity = 'Jul-01-08';
Div1 = 'March-01-2008';
Div2 = 'Jun-01-2008';
```

Create RateSpec and StockSpec:

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, 0.50,{Div1,Div2});
```

Define two options, one call and one put:

```
OptSpec = {'call'; 'put'};
```

Calculate the price of the European options:

```
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =
    3.2063
    3.4027
```

The first element of the Price vector represents the price of the call (\$3.21); the second is the price of the put ($\$ 3.40$). Use the function optstocksensbybls to compute six sensitivities for the Black-Scholes model: delta, gamma, vega, lambda, rho, and theta and the price of the option.

The selection of output parameters and their order is determined by the optional input parameter OutSpec. This parameter is a cell array of strings, each one specifying a desired output parameter. The order in which these output parameters are returned by the function is the same as the order of the strings contained in OutSpec.

As an example, consider the same options as the previous example. To calculate their Delta, Rho, Price, and Gamma, build the cell array OutSpec as follows:

```
OutSpec = {'delta', 'rho', 'price', 'gamma'};
[Delta, Rho, Price, Gamma] =optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)
Delta =
    0.5328
    -0.4672
Rho =
    8.7902
```


Computing Prices and Sensitivities Using the Black Model

Consider two European call options on a futures contract with exercise prices of $\$ 20$ and $\$ 25$ that expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at $\$ 20$ and has a volatility of 35% per annum. The risk-free rate is 4% per annum. Using this data, calculate the price of the call futures options using the Black model:

```
Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';
```

Create RateSpec and StockSpec:

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(Sigma, AssetPrice);
```

Define the call option:

```
OptSpec = {'call'};
```

Calculate price and all sensitivities of the European futures options:

```
OutSpec = {'All'}
[Delta, Gamma, Vega, Lambda, Rho, Theta, Price] = optstocksensbyblk(RateSpec,...
StockSpec, Settle, Maturity, OptSpec, Strike, 'OutSpec', OutSpec);
Price =
    1.5903
    0.3037
```

The first element of the Price vector represents the price of the call with an exercise price of $\$ 20(\$ 1.59)$; the second is the price of the call with an exercise price of $\$ 25$ ($\$ 2.89$).

The function impvbyblk is used to compute the implied volatility using the Black option pricing model. Assuming that the previous European call futures are trading at $\$ 1.5903$ and $\$ 0.3037$, you can calculate their implied volatility:

```
Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, Price);
```

As expected, you get volatilities of 35%. If the call futures were trading at $\$ 1.50$ and $\$ 0.50$ in the market, the implied volatility would be 33% and 42% :

```
Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, [1.50;0.5])
Volatility =
```

 0.3301
 0.4148

Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model

Consider two American call options, with exercise prices of $\$ 110$ and $\$ 100$ on June 1, 2008, that expire on June 1, 2009. Assume the underlying stock pays dividends of $\$ 0.001$ on December 1, 2008. The stock is trading at $\$ 80$ and has
a volatility of 20% per annum. The risk-free rate is 6% per annum. Using this data, calculate the price of the American calls using the Roll-Geske-Whaley option pricing model:

```
AssetPrice = 80;
Settle = 'Jun-01-2008';
Maturity = 'Jun-01-2009';
Strike = [110; 100];
Rate = 0.06;
Sigma = 0.2;
DivAmount = 0.001;
DivDate = 'Dec-01-2008';
```

Create RateSpec and StockSpec:

```
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);
```

Calculate the call prices:

```
Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)
Price =
    0.8398
    2.0236
```

The first element of the Price vector represents the price of the call with an exercise price of $\$ 110(\$ 0.84)$; the second is the price of the call with an exercise price of $\$ 100$ (\$2.02).

Computing Prices and Sensitivities Using the Bjerksund-Stensland Model

Consider four American stock options (two calls and two puts) with an exercise price of $\$ 100$ that expire on July 1, 2008. Assume the underlying stock pays a continuous dividend yield of 4% as of January 1, 2008. The stock
has a volatility of 20% per annum and the risk-free rate is 8% per annum. Using this data, calculate the price of the American calls and puts assuming the following current prices of the stock: $\$ 80, \$ 90$ (for the calls) and $\$ 100$ and $\$ 110$ (for the puts):

```
Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
AssetPrice = [80; 90; 100; 110];
DivYield = 0.04;
Rate = 0.08;
Sigma = 0.20;
```

Create RateSpec and StockSpec:

```
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);
```

Define the option type:

```
OptSpec = {'call'; 'call'; 'put'; 'put'};
```

Compute the option prices:

```
Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =
    0.4144
    2.1804
    4.7253
    1.7164
```

The first two elements of the Price vector represent the price of the calls ($\$ 0.41$ and $\$ 2.18$), the last two elements represent the price of the put options (\$4.72 and \$1.72). Use the function optstocksensbybjs to compute six sensitivities for the Bjerksund-Stensland model: delta, gamma, vega, lambda, rho, and theta and the price of the option. The selection of output
parameters and their order is determined by the optional input parameter OutSpec. This parameter is a cell array of strings, each one specifying a desired output parameter. The order in which these output parameters are returned by the function is the same as the order of the strings contained in OutSpec. As an example, consider the same options as the previous example. To calculate their delta, gamma, and price, build the cell array OutSpec as follows:

```
OutSpec = {'delta', 'gamma', 'price'};
```

The outputs of optstocksensbybjs will be in the same order as in OutSpec.

```
[Delta ,Gamma, Price]= optstocksensbybjs(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)
Delta =
    0.0843
    0.2912
    0.4803
    0.2261
Gamma =
    0.0136
    0.0267
    0.0304
    0.0217
Price =
    0.4144
    2.1804
    4.7253
    1.7164
```


Hedging Portfolios

- "Hedging" on page 4-2
- "Hedging Functions" on page 4-3
- "Specifying Constraints with ConSet" on page 4-16
- "Hedging with Constrained Portfolios" on page 4-21

Hedging

Hedging is an important consideration in modern finance. Whether or not to hedge, how much portfolio insurance is adequate, and how often to rebalance a portfolio are important considerations for traders, portfolio managers, and financial institutions alike.

If there were no transaction costs, financial professionals would prefer to rebalance portfolios continually, thereby minimizing exposure to market movements. However, in practice, the transaction costs associated with frequent portfolio rebalancing may be expensive. Therefore, traders and portfolio managers must carefully assess the cost required to achieve a particular portfolio sensitivity (for example, maintaining delta, gamma, and vega neutrality). Thus, the hedging problem involves the fundamental tradeoff between portfolio insurance and the cost of such insurance coverage.

Hedging Functions

In this section...
"Introduction" on page 4-3
"Hedging with hedgeopt" on page 4-4
"Self-Financing Hedges with hedgeslf" on page 4-12

Introduction

Financial Derivatives Toolbox software offers two functions for assessing the fundamental hedging tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It allocates an optimal hedge to satisfy either of two goals:

- Minimize the cost of hedging a portfolio given a set of target sensitivities.
- Minimize portfolio sensitivities for a given set of maximum target costs.
hedgeopt allows investors to modify portfolio allocations among instruments according to either of the goals. The problem is cast as a constrained linear least-squares problem. For additional information about hedgeopt, see "Hedging with hedgeopt" on page 4-4.

The second function, hedgeslf, attempts to allocate a self-financing hedge among a portfolio of instruments. In particular, hedgeslf attempts to maintain a constant portfolio value consistent with reduced portfolio sensitivities (that is, the rebalanced portfolio is hedged against market moves and is closest to being self-financing). If hedgeslf cannot find a self-financing hedge, it rebalances the portfolio to minimize overall portfolio sensitivities. For additional information on hedgeslf, see "Self-Financing Hedges with hedgeslf" on page 4-12.

The examples in this section consider the delta, gamma, and vega sensitivity measures. In this toolbox, when you work with interest-rate derivatives, delta is the price sensitivity measure of shifts in the forward yield curve, gamma is the delta sensitivity measure of shifts in the forward yield curve, and vega is the price sensitivity measure of shifts in the volatility process. See bdtsens
or hjmsens for details on the computation of sensitivities for interest-rate derivatives.

For equity exotic options, the underlying instrument is the stock price instead of the forward yield curve. Consequently, delta now represents the price sensitivity measure of shifts in the stock price, gamma is the delta sensitivity measure of shifts in the stock price, and vega is the price sensitivity measure of shifts in the volatility of the stock. See crrsens, eqpsens, or ittsens for details on the computation of sensitivities for equity derivatives.

For examples showing the computation of sensitivities for interest-rate based derivatives, see "Computing Instrument Sensitivities" on page 2-27. Likewise, for examples showing the computation of sensitivities for equity exotic options, see "Computing Instrument Sensitivities" on page 3-43.

Note The delta, gamma, and vega sensitivities that the toolbox calculates are dollar sensitivities.

Hedging with hedgeopt

Note The numerical results in this section are displayed in the MATLAB bank format. Although the calculations are performed in floating-point double precision, only two decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained from the example file deriv.mat. The portfolio consists of eight instruments: two bonds, one bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and one swap.

Both hedging functions require some common inputs, including the current portfolio holdings (allocations), and a matrix of instrument sensitivities. To create these inputs, load the example portfolio into memory

```
load deriv.mat;
compute price and sensitivities
```

```
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
```

and extract the current portfolio holdings.

```
Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');
```

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.

```
Sensitivities = [Delta Gamma Vega];
```

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio, and each column with a different sensitivity measure.

To summarize the portfolio information

disp([Price	Holdings	Sensitivities])		
98.72	100.00	-272.65	1029.90	0.00
97.53	50.00	-347.43	1622.69	-0.04
0.05	-50.00	-8.08	643.40	34.07
98.72	80.00	-272.65	1029.90	0.00
100.55	8.00	-1.04	3.31	0
6.28	30.00	294.97	6852.56	93.69
0.05	40.00	-47.16	8459.99	93.69
3.69	10.00	-282.05	1059.68	0.00

The first column above is the dollar unit price of each instrument, the second is the holdings of each instrument (the quantity held or the number of contracts), and the third, fourth, and fifth columns are the dollar delta, gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in the portfolio.

```
TargetSens = Holdings' * Sensitivities
TargetSens =
```


Maintaining Existing Allocations

To illustrate using hedgeopt, suppose that you want to maintain your existing portfolio. The first form of hedgeopt minimizes the cost of hedging a portfolio given a set of target sensitivities. If you want to maintain your existing portfolio composition and exposure, you should be able to do so without spending any money. To verify this, set the target sensitivities to the current sensitivities.
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [], [], [], TargetSens)
Sens =
-61910.22 $788946.21 \quad 4852.91$
Cost $=$
0
Quantity' =
100.00
50.00
-50.00
80.00
8.00
30.00
40.00
10.00

Portfolio composition and sensitivities are unchanged, and the cost associated with doing nothing is zero. The cost is defined as the change in portfolio value. This number cannot be less than zero because the rebalancing cost is defined as a nonnegative number.

If Value0 and Value1 represent the portfolio value before and after rebalancing, respectively, the zero cost can also be verified by comparing the portfolio values.

```
Value0 = Holdings' * Price
Value0 =
```

 23674.62
 Value1 = Quantity * Price
Value1 =
23674.62

Partially Hedged Portfolio

Building on the example in "Maintaining Existing Allocations" on page $4-6$, suppose you want to know the cost to achieve an overall portfolio dollar sensitivity of [-23000-3300 3000], while allowing trading only in instruments 2 , 3 , and 6 (holding the positions of instruments $1,4,5,7$, and 8 fixed). To find the cost, first set the target portfolio dollar sensitivity.

```
TargetSens = [-23000 -3300 3000];
```

Then, specify the instruments to be fixed.

```
FixedInd = [1 4 5 7 8];
```

Finally, call hedgeopt

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);
```

and again examine the results.

```
Sens =
    -23000.00 -3300.00 3000.00
```

```
Cost =
    19174.02
Quantity' =
    100.00
-141.03
137.26
80.00
8.00
-57.96
40.00
10.00
```

Recompute Value1, the portfolio value after rebalancing.

```
Value1 = Quantity * Price
Value1 =
```

4500.60

As expected, the cost, $\$ 19174.02$, is the difference between Value0 and Value1, $\$ 23674.62$ - $\$ 4500.60$. Only the positions in instruments 2,3 , and 6 have been changed.

Fully Hedged Portfolio

The example in "Partially Hedged Portfolio" on page 4-7 illustrates a partial hedge, but perhaps the most interesting case involves the cost associated with a fully hedged portfolio (simultaneous delta, gamma, and vega neutrality). In this case, set the target sensitivity to a row vector of 0 s and call hedgeopt again.

```
TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...
Holdings, FixedInd, [], [], TargetSens);
```

Examining the outputs reveals that you have obtained a fully hedged portfolio

```
Sens =
    -0.00 -0.00 -0.00
```

but at an expense of over $\$ 20,000$.

```
Cost =
```

23055.90

The positions required to achieve a fully hedged portfolio

```
Quantity' =
```

100.00
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00
result in the new portfolio value

```
Value1 = Quantity * Price
Value1 =
```

618.72

Minimizing Portfolio Sensitivities

The examples in "Fully Hedged Portfolio" on page 4-8 illustrate how to use hedgeopt to determine the minimum cost of hedging a portfolio given a set of target sensitivities. In these examples, portfolio target sensitivities are treated as equality constraints during the optimization process. You tell hedgeopt what sensitivities you want, and it tells you what it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of maximum target costs. For this goal, the target costs are treated as inequality constraints during the optimization process. You tell hedgeopt the most you are willing spend to insulate your portfolio, and it tells you the smallest portfolio sensitivities you can get for your money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities along the entire cost frontier. From the previous examples, you know that spending nothing replicates the existing portfolio, while spending $\$ 23,055.90$ completely hedges the portfolio.

Assume, for example, you are willing to spend as much as $\$ 50,000$, and want to see what portfolio sensitivities will result along the cost frontier. Assume that the same instruments are held fixed, and that the cost frontier is evaluated from $\$ 0$ to $\$ 50,000$ at increments of $\$ 1000$.

```
MaxCost = [0:1000:50000];
```

Now, call hedgeopt.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...
Holdings, FixedInd, [], MaxCost);
```

With this data, you can plot the required hedging cost versus the funds available (the amount you are willing to spend)

```
plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Actual Rebalancing Cost ($1000''s)')
title ('Rebalancing Cost Profile')
```


Rebalancing Cost Profile

and the portfolio dollar sensitivities versus the funds available.

```
figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', O)
```


Funds Available for Rebalancing

Self-Financing Hedges with hedgeslf

The figures Rebalancing Cost Profile on page 4-11 and Funds Available for Rebalancing on page 4-12 indicate that there is no benefit because the funds available for hedging exceed $\$ 23,055.90$, the point of maximum expense required to obtain simultaneous delta, gamma, and vega neutrality. You can also find this point of delta, gamma, and vega neutrality using hedgeslf.

```
[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd);
Sens =
    -0.00
    -0.00
    -0.00
Value1 =
```

 618.72
    ```
Quantity =
    100.00
-182.36
    -19.55
    80.00
        8.00
    -32.97
    40.00
    10.00
```

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and instrument quantities (the rebalanced holdings). However, in contrast, the second output parameter of hedgeslf is the value of the rebalanced portfolio, from which you can calculate the rebalancing cost by subtraction.

```
Value0 - Value1
ans =
```

23055.90

In this example, the portfolio is clearly not self-financing, so hedgeslf finds the best possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related to the results shown above for hedgeslf. Suppose, instead of directly specifying the funds available for rebalancing (the most money you are willing to spend), you want to simply specify the number of points along the cost frontier. This call to hedgeopt samples the cost frontier at 10 equally spaced points between the point of minimum cost (and potentially maximum exposure) and the point of minimum exposure (and maximum cost).

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, 10);
Sens =
    -32784.46 2231.83 -49694.33
    -29141.74 1983.85 -44172.74
```

```
        -25499.02
        -21856.30
        -18213.59
    -14570.87
    -10928.15
    -7285.43
    -3642.72
            0 . 0 0
Cost =
            0.00
        2561.77
        5123.53
        7685.30
        10247.07
        12808.83
        15370.60
        17932.37
        20494.14
        23055.90
```

Now plot this data.

```
figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
```


Rebalancing Cost

In this calling form, hedgeopt calls hedgeslf internally to determine the maximum cost needed to minimize the portfolio sensitivities (\$23,055.90), and evenly samples the cost frontier between $\$ 0$ and $\$ 23,055.90$.

Note that both hedgeopt and hedgeslf cast the optimization problem as a constrained linear least squares problem. Depending on the instruments and constraints, neither function is guaranteed to converge to a solution. In some cases, the problem space may be unbounded, and additional instrument equality constraints, or user-specified constraints, may be necessary for convergence. See "Hedging with Constrained Portfolios" on page 4-21 for additional information.

Specifying Constraints with ConSet

In this section...
"Introduction" on page 4-16
"Setting Constraints" on page 4-16
"Portfolio Rebalancing" on page 4-19

Introduction

Both hedgeopt and hedgeslf accept an optional input argument, ConSet, that allows you to specify a set of linear inequality constraints for instruments in your portfolio. The examples in this section are brief. For additional information regarding portfolio constraint specifications, refer to "Analyzing Portfolios" in the Financial Toolbox documentation.

Setting Constraints

For the first example of setting constraints, return to the fully hedged portfolio example that used hedgeopt to determine the minimum cost of obtaining simultaneous delta, gamma, and vega neutrality (target sensitivities all 0). Recall that when hedgeopt computes the cost of rebalancing a portfolio, the input target sensitivities you specify are treated as equality constraints during the optimization process. The situation is reproduced next for convenience.

```
TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);
```

The outputs provide a fully hedged portfolio
Sens =
$\begin{array}{lll}-0.00 & -0.00 & -0.00\end{array}$
at an expense of over $\$ 23,000$.

```
Cost =
```

23055.90

The positions required to achieve this fully hedged portfolio are

| Quantity | $=$ |
| ---: | :--- |
| 100.00 | |
| -182.36 | |
| -19.55 | |
| 80.00 | |
| 8.00 | |
| -32.97 | |
| 40.00 | |
| 10.00 | |

Suppose now that you want to place some upper and lower bounds on the individual instruments in your portfolio. You can specify these constraints, along with a variety of general linear inequality constraints, with Financial Toolbox function portcons.

As an example, assume that, in addition to holding instruments $1,4,5,7$, and 8 fixed as before, you want to bound the position of all instruments to within +/- 180 contracts (for each instrument, you cannot short or long more than 180 contracts). Applying these constraints disallows the current position in the second instrument (short 182.36). All other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.

```
LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [ [ 180 180 180 180 180 180 180 180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);
```

To impose these constraints, call hedgeopt with ConSet as the last input.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens, ConSet);
```

Examine the outputs and see that they are all set to NaN , indicating that the problem, given the constraints, is not solvable. Intuitively, the results mean
that you cannot obtain simultaneous delta, gamma, and vega neutrality with these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints, call hedgeslf.
[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... Holdings, FixedInd, ConSet);

```
Sens =
```

-352.43
21.99
-498.77
Value1 =
855.10
Quantity =
100.00
-180.00
-37.22
80.00
8.00
-31.86
40.00
10.00
hedgeslf enforces the lower bound for the second instrument, but the sensitivity is far from neutral. The cost to obtain this portfolio is

```
ValueO - Value1
ans =
22819.52
```


Portfolio Rebalancing

As a final example of user-specified constraints, rebalance the portfolio using the second hedging goal of hedgeopt. Assume that you are willing to spend as much as $\$ 20,000$ to rebalance your portfolio, and you want to know what minimum portfolio sensitivities you can get for your money. In this form, recall that the target cost $(\$ 20,000)$ is treated as an inequality constraint during the optimization process.

For reference, startup hedgeopt without any user-specified linear inequality constraints.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], 20000);
Sens =
    -4345.36 295.81 -6586.64
Cost =
    20000.00
Quantity' =
    100.00
    -151.86
    -253.47
        80.00
            8.00
        -18.18
        4 0 . 0 0
        10.00
```

This result corresponds to the $\$ 20,000$ point along the Portfolio Sensitivities Profile shown in the figure Rebalancing Cost on page 4-15.

Assume that, in addition to holding instruments $1,4,5,7$, and 8 fixed as before, you want to bound the position of all instruments to within $+/-150$ contracts (for each instrument, you cannot short more than 150 contracts and you cannot long more than 150 contracts). These bounds disallow the current
position in the second and third instruments (-151.86 and -253.47). All other instruments are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.

```
LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [ [150 150 150 150 150 150 150 150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);
```

To impose these constraints, again call hedgeopt with ConSet as the last input.

```
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings,FixedInd, [], 20000, [], ConSet);
Sens =
    -8818.47 434.43 -4010.79
Cost =
    19876.89
Quantity' =
    100.00
    -150.00
    -150.00
        80.00
            8.00
        -28.32
        40.00
        10.00
```

With these constraints, hedgeopt enforces the lower bound for the second and third instruments. The cost incurred is $\$ 19,876.89$.

Hedging with Constrained Portfolios

In this section...

"Overview" on page 4-21
"Example: Fully Hedged Portfolio" on page 4-21
"Example: Minimize Portfolio Sensitivities" on page 4-24
"Example: Under-Determined System" on page 4-25
"Example: Portfolio Constraints with hedgeslf" on page 4-27

Overview

Both hedging functions cast the optimization as a constrained linear least-squares problem. (See the function lsqlin in the Optimization Toolbox documentation for details.) In particular, lsqlin attempts to minimize the constrained linear least squares problem

$$
\min _{x} \frac{1}{2}\|C x-d\|_{2}^{2} \quad \text { such that } \quad \begin{array}{ll}
& A \cdot x \leq b \\
& A e q \cdot x=b e q \\
& l b \leq x \leq u b
\end{array}
$$

where C, A, and $A e q$ are matrices, and $d, b, b e q, l b$, and $u b$ are vectors. For Financial Derivatives Toolbox software, x is a vector of asset holdings (contracts).

Depending on the constraints and the number of assets in the portfolio, a solution to a particular problem may or may not exist. Furthermore, if a solution is found, it may not be unique. For a unique solution to exist, the least squares problem must be sufficiently and appropriately constrained.

Example: Fully Hedged Portfolio

Recall that hedgeopt allows you to allocate an optimal hedge by one of two goals:

- Minimize the cost of hedging a portfolio given a set of target sensitivities.
- Minimize portfolio sensitivities for a given set of maximum target costs.

As an example, reproduce the results for the fully hedged portfolio example.

```
TargetSens = [\begin{array}{lll}{0}&{0}&{0}\end{array}];
FixedInd = [1 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);
Sens =
    -0.00 -0.00 -0.00
Cost =
    23055.90
Quantity' =
    98.72
-182.36
-19.55
80.00
8.00
-32.97
4 0 . 0 0
10.00
```

This example finds a unique solution at a cost of just over $\$ 23,000$. The matrix C (formed internally by hedgeopt and passed to lsqlin) is the asset Price vector expressed as a row vector.

```
C = Price' = [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]
```

The vector d is the current portfolio value Value0 $=23674.62$. The example maintains, as closely as possible, a constant portfolio value subject to the specified constraints.

Additional Constraints

In the absence of any additional constraints, the least squares objective involves a single equation with eight unknowns. This is an under-determined system of equations. Because such systems generally have an infinite number of solutions, you need to specify additional constraints to achieve a solution with practical significance.

The additional constraints can come from two sources:

- User-specified equality constraints
- Target sensitivity equality constraints imposed by hedgeopt

The example in "Fully Hedged Portfolio" on page $4-8$ specifies five equality constraints associated with holding assets $1,4,5,7$, and 8 fixed. This reduces the number of unknowns from eight to three, which is still an under-determined system. However, when combined with the first goal of hedgeopt, the equality constraints associated with the target sensitivities in TargetSens produce an additional system of three equations with three unknowns. This additional system guarantees that the weighted average of the delta, gamma, and vega of assets 2,3 , and 6 , together with the remaining assets held fixed, satisfy the overall portfolio target sensitivity needs in TargetSens.

Combining the least-squares objective equation with the three portfolio sensitivity equations provides an overall system of four equations with three unknown asset holdings. This is no longer an under-determined system, and the solution is as shown.

If the assets held fixed are reduced, for example, FixedInd = [$\left.\begin{array}{llll}1 & 4 & 5 & 7\end{array}\right]$, hedgeopt returns a no cost, fully hedged portfolio (Sens = [lll 0000 and Cost = 0).
 hedgeopt always returns a no cost, fully hedged portfolio. In these cases, insufficient constraints result in an under-determined system. Although hedgeopt identifies no cost, fully hedged portfolios, there is nothing unique about them. These portfolios have little practical significance.

Constraints must be sufficient and appropriately defined. Additional constraints having no effect on the optimization are called dependent constraints. As a simple example, assume that parameter Z is constrained such that $Z \leq 1$. Furthermore, assume you somehow add another constraint that effectively restricts $Z \leq 0$. The constraint $Z \leq 1$ now has no effect on the optimization.

Example: Minimize Portfolio Sensitivities

To illustrate using hedgeopt to minimize portfolio sensitivities for a given maximum target cost, specify a target cost of $\$ 20,000$ and determine the new portfolio sensitivities, holdings, and cost of the rebalanced portfolio.

```
MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [1 4 5 7 8], [], MaxCost);
Sens =
    -4345.36 295.81 -6586.64
Cost =
    20000.00
Quantity' =
    100.00
    -151.86
    -253.47
        80.00
            8.00
        -18.18
        40.00
        10.00
```

This example corresponds to the $\$ 20,000$ point along the cost axis in the figures Rebalancing Cost Profile on page 4-11, Funds Available for Rebalancing on page 4-12, and Rebalancing Cost on page 4-15.

When minimizing sensitivities, the maximum target cost is treated as an inequality constraint; in this case, MaxCost is the most you are willing to spend to hedge a portfolio. The least-squares objective matrix C is the matrix transpose of the input asset sensitivities

```
C = Sensitivities'
```

a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros, [0 0 0]'.

Without any additional constraints, the least-squares objective results in an under-determined system of three equations with eight unknowns. By holding assets $1,4,5,7$, and 8 fixed, you reduce the number of unknowns from eight to three. Now, with a system of three equations with three unknowns, hedgeopt finds the solution shown.

Example: Under-Determined System

Reducing the number of assets held fixed creates an under-determined system with meaningless solutions. For example, see what happens with only four assets constrained.

```
FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], MaxCost);
Sens =
    -0.00 -0.00 -0.00
Cost =
    20000.00
Quantity' =
    100.00
    -149.31
    -14.91
    80.00
```

8.00
-34.64
40.00
-32.60

You have spent $\$ 20,000$ (all the funds available for rebalancing) to achieve a fully hedged portfolio.

With an increase in available funds to $\$ 50,000$, you still spend all available funds to get another fully hedged portfolio.

```
MaxCost = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [],MaxCost);
Sens =
    -0.00 0.00
Cost =
    50000.00
Quantity' =
    100.00
    -473.78
        -60.51
        80.00
            8.00
            -18.20
            40.00
            385.60
```

All solutions to an under-determined system are meaningless. You buy and sell various assets to obtain zero sensitivities, spending all available funds every time. If you reduce the number of fixed assets any further, this problem is insufficiently constrained, and you find no solution (the outputs are all NaN).

Note also that no solution exists whenever constraints are inconsistent. Inconsistent constraints create an infeasible solution space; the outputs are all NaN.

Example: Portfolio Constraints with hedgesIf

The other hedging function, hedgeslf, attempts to minimize portfolio sensitivities such that the rebalanced portfolio maintains a constant value (the rebalanced portfolio is hedged against market moves and is closest to being self-financing). If a self-financing hedge is not found, hedgeslf tries to rebalance a portfolio to minimize sensitivities.

From a least-squares systems approach, hedgeslf first attempts to minimize cost in the same way that hedgeopt does. If it cannot solve this problem (a no cost, self-financing hedge is not possible), hedgeslf proceeds to minimize sensitivities like hedgeopt. Thus, the discussion of constraints for hedgeopt is directly applicable to hedgeslf as well.

To illustrate this hedging facility using equity exotic options, consider the portfolio CRRInstSet obtained from the example MAT-file deriv.mat. The portfolio consists of eight option instruments: two stock options, one barrier, one compound, two lookback, and two Asian.

The hedging functions require inputs that include the current portfolio holdings (allocations) and a matrix of instrument sensitivities. To create these inputs, start by loading the example portfolio into memory

```
load deriv.mat;
```

Next, compute the prices and sensitivities of the instruments in this portfolio.

```
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);
```

Extract the current portfolio holdings (the quantity held or the number of contracts).

```
Holdings = instget(CRRInstSet, 'FieldName', 'Quantity');
```

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of sensitivities.

```
Sensitivities = [Delta Gamma Vega];
```

Each row of the Sensitivities matrix is associated with a different instrument in the portfolio and each column with a different sensitivity measure.

| disp([Price Holdings | Sensitivities]) | | | |
| ---: | ---: | ---: | ---: | ---: |
| 8.29 | 10.00 | 0.59 | 0.04 | 53.45 |
| 2.50 | 5.00 | -0.31 | 0.03 | 67.00 |
| 12.13 | 1.00 | 0.69 | 0.03 | 67.00 |
| 3.32 | 3.00 | -0.12 | -0.01 | -98.08 |
| 7.60 | 7.00 | -0.40 | -45926.32 | 88.18 |
| 11.78 | 9.00 | -0.42 | -112143.15 | 119.19 |
| 4.18 | 4.00 | 0.60 | 45926.32 | 49.21 |
| 3.42 | 6.00 | 0.82 | 112143.15 | 41.71 |

The first column contains the dollar unit price of each instrument, the second contains the holdings of each instrument, and the third, fourth, and fifth columns contain the delta, gamma, and vega dollar sensitivities, respectively.

Suppose that you want to obtain a delta, gamma and vega neutral portfolio using hedgeslf.

```
[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price, ...
Holdings)
Sens =
    0.00
    -0.00
    0.00
Value1 =
    3 1 3 . 9 3
Quantity =
    10.00
```

7.64
-1. 56
26.13
9.94
3.73
-0.75
8.11
hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced portfolio (Value1) and the new allocation for each instrument (Quantity).

If Value0 and Value1 represent the portfolio value before and after rebalancing, respectively, you can verify the cost by comparing the portfolio values.

```
Value0= Holdings' * Price
Value0 =
```

313.93

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega neutrality) and self-financing (the values of the portfolio before and after balancing (Value0 and Value1) are the same.

Suppose now that you want to place some upper and lower bounds on the individual instruments in your portfolio. By using Financial Toolbox function portcons, you can specify these constraints, along with a variety of general linear inequality constraints.

As an example, assume that, in addition to holding instrument 1 fixed as before, you want to bound the position of all instruments to within +/20 contracts (for each instrument, you cannot short or long more than 20 contracts). Applying these constraints disallows the current position in the fourth instrument (long 26.13). All other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors and then calling portcons.

```
LowerBounds =[[l-20 -20 -20 -20 -20 -20 -20 -20];
UpperBounds =[[\begin{array}{llllllllll}{20}&{20}&{20}&{20}&{20}&{20}&{20}&{20}\end{array}];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);
```

To impose these constraints, call hedgeslf with ConSet as the last input.

```
[Sens, Cost, Quantity1] = hedgeslf(Sensitivities, Price, ...
Holdings, 1, ConSet)
Sens =
    -0.00
        0.00
        0.00
Cost =
            313.93
Quantity1 =
    10.00
        5.28
        10.98
        20.00
        20.00
        -6.99
        -20.00
        9.39
```

Observe that hedgeslf enforces the upper bound on the fourth instrument, and the portfolio continues to be fully hedged and self-financing.

Function Reference

| Portfolio Hedge Allocation (p. 5-3) | Work with hedge portfolios |
| :--- | :--- |
| Interest-Rate Term Structure (p. 5-3) | Work with interest-rate term
 structure |
| Heath-Jarrow-Morton Trees (p. 5-3) | Work with Heath-Jarrow-Morton
 trees |
| Black-Derman-Toy Trees (p. 5-4) | Work with Black-Derman-Toy trees |
| Black-Karasinski Trees (p. 5-4) | Work with Black-Karasinski trees |
| Cox-Ross-Rubinstein Trees (p. 5-5) | Work with Cox-Ross-Rubinstein
 trees |
| Equal Probabilities Binomial Trees | Working with Equal Probabilities
 (p. 5-5) |
| Hull-White Trees (p. 5-6) | Price and sensitivity functions for
 working with Hull-White trees |
| Implied Trinomial Tree (p. 5-6) | Price and sensitivity functions for
 working with Hull-White trees |
| Heath-Jarrow-Morton Utilities | Work with Heath-Jarrow-Morton
 utilities |
| (p. 5-7) | Work with Black-Derman-Toy
 Black-Derman-Toy Utilities (p. 5-7) |
| Black-Karasinski Utilities (p. 5-8) | Work with Black-Karasinski utilities
 Cox-Ross-Rubinstein Utilities |
| Work with Cox-Ross-Rubinstein
 utilities | |
| (p. 5-9) | Work with equal probabilities tree |
| Equal Probabilities Tree Utilities | utilities |
| (p. 5-10) | |

| Implied Trinomial Tree Utilities | Work with implied trinomial tree
 (p. 5-10) |
| :--- | :--- |
| Hull-White Utilities (p. 5-11) | Work with Hull-White utilities |
| Tree Manipulation (p. 5-11) | General tree manipulation |
| Derivatives Pricing Options (p. 5-12) | Work with derivatives pricing
 options |
| Pricing and Sensitivity Using | Work with Black-Scholes Option |
| Black-Scholes Option Pricing Model
 (p. 5-12) | Pricing |
| Pricing and Sensitivity Using Black | Work with Black Option Pricing |
| Option Pricing Model (p. 5-13) | |
| Pricing and Sensitivity Using | Work with Longstaff-Schwartz |
| Longstaff-Schwartz Option Pricing | Option Pricing |
| Model (p. 5-14) | |
| Pricing and Sensitivity Using | Work with Nengjiu Ju Option |
| Nengiu Ju Approximation Model | Pricing |
| (p. 5-14) | Work with Role-Geske-Whaley |
| Pricing and Sensitivity Using | Option Pricing |
| Role-Geske-Whaley Option Pricing | |
| Model (p. 5-15) | Work with Bjerksund-Stensland |
| Pricing and Sensitivity Using | Option Pricing |
| Bjerksund-Stensland Option Pricing | |
| Model (p. 5-15) | Work with Bjerksund-Stensland |
| Pricing and Sensitivity Using Stulz | Option Pricing |
| Option Pricing Model (p. 5-16) | Work with instrument portfolios |
| Instrument Portfolio Handling | |
| (p. 5-16) | Display date entries |
| Financial Object Structures (p. 5-18) | Work with financial structures |
| Interest Term Structure (p. 5-18) | Work with interest term structure |
| Date (p. 5-18) | Dree information graphically |
| Graphical Display (p. 5-19) | Display |

Portfolio Hedge Allocation

hedgeopt
hedgeslf

Allocate optimal hedge for target costs or sensitivities

Self-financing hedge

Price bond from set of zero curves
Price cash flows from set of zero curves

Price fixed-rate note from set of zero curves

Price floating-rate note from set of zero curves

Price instruments from set of zero curves

Instrument price and sensitivities from set of zero curves

Price swap instrument from set of zero curves

Instrument prices from HJM interest-rate tree
Instrument prices and sensitivities from HJM interest-rate tree

hjmtimespec
hjmtree
hjmvolspec
swaptionbyhjm

Specify time structure for HJM interest-rate tree

Construct HJM interest-rate tree
Specify HJM interest-rate volatility process

Price swaption from HJM interest-rate tree

Black-Derman-Toy Trees

| bdtprice | Instrument prices from BDT
 interest-rate tree |
| :--- | :--- |
| bdtsens | Instrument prices and sensitivities
 from BDT interest-rate tree |
| bdttimespec | Specify time structure for BDT
 interest-rate tree |
| bdttree | Construct BDT interest-rate tree |
| bdtvolspec | Specify BDT interest-rate volatility
 process |

Black-Karasinski Trees

bkprice
bksens

Instrument prices from Black-Karasinski interest-rate tree

Instrument prices and sensitivities from Black-Karasinski interest-rate tree
bktimespec
bktree
bkvolspec
swaptionbybk

Cox-Ross-Rubinstein Trees

crrprice
crrsens
crrtimespec

crrtree

Equal Probabilities Binomial Trees

| eqpprice | Instrument prices from EQP
 binomial tree |
| :--- | :--- |
| eqpsens | Instrument prices and sensitivities
 from EQP binomial tree |
| eqptimespec | Specify time structure for EQP
 binomial tree |
| eqptree | Construct EQP stock tree |

Hull-White Trees

\(\left.\begin{array}{ll}hwcalbycap \& Calibrate Hull-White tree using caps

hwcalbyfloor \& Calibrate Hull-White tree using

floors\end{array}\right]\)| Instrument prices from Hull-White |
| :--- |
| interest-rate tree |
| hwprice |
| hwsens |
| nwtimespec |
| |
| Instrument prices and sensitivities |
| from HW interest-rate tree |
| hwtree |
| Specify time structure for Hull-White |
| hwvolspec |

Implied Trinomial Tree

ittprice
ittsens
itttimespec
itttree
stockoptspec

Price instruments using implied trinomial tree (ITT)

Instrument sensitivities and prices using implied trinomial tree (ITT)

Specify time structure using implied trinomial tree (ITT)

Build implied trinomial stock tree
Specify European stock option structure

Heath-Jarrow-Morton Utilities

bondbyhjm
capbyhjm
cfbyhjm
fixedbyhjm
floatbyhjm
floorbyhjm
mmktbyhjm
optbndbyhjm
optembndbyhjm
swapbyhjm

Price bond from HJM interest-rate tree

Price cap instrument from HJM interest-rate tree

Price cash flows from HJM interest-rate tree

Price fixed-rate note from HJM interest-rate tree

Price floating-rate note from HJM interest-rate tree

Price floor instrument from HJM interest-rate tree

Create money-market tree from HJM interest-rate tree

Price bond option from HJM interest-rate tree

Price bonds with embedded options by Heath-Jarrow-Morton interest-rate tree

Price swap instrument from HJM interest-rate tree

Black-Derman-Toy Utilities

bondbybdt
capbybdt

Price bond from BDT interest-rate tree

Price cap instrument from BDT interest-rate tree

| cfbybdt | Price cash flows from BDT
 interest-rate tree |
| :--- | :--- |
| fixedbybdt | Price fixed-rate note from BDT
 interest-rate tree |
| floatbybdt | Price floating-rate note from BDT
 interest-rate tree |
| floorbybdt | Price floor instrument from BDT
 interest-rate tree |
| mmktbybdt | Create money-market tree from BDT
 interest-rate tree |
| optbndbybdt | Price bond option from BDT
 interest-rate tree |
| optembndbybdt | Price bonds with embedded options
 by Black-Derman-Toy interest rate
 tree |
| swapbybdt | Price swap instrument from BDT
 interest-rate tree |
| swaptionbybdt | Price swaption from BDT
 interest-rate tree |
| | |

Black-Karasinski Utilities

bondbybk
capbybk
cfbybk

| fixedbybk | Price fixed-rate note from
 Black-Karasinski interest-rate
 tree |
| :--- | :--- |
| floatbybk | Price floating-rate note from
 Black-Karasinski interest-rate tree |
| floorbybk | Price floor instrument from
 Black-Karasinski interest-rate tree |
| optbndbybk | Price bond option from
 Black-Karasinski interest-rate
 tree |
| optembndbybk | Price bonds with embedded options
 by Black-Karasinski interest-rate |
| tree | |

Cox-Ross-Rubinstein Utilities

asianbycrr
barrierbycrr
compoundbycrr
lookbackbycrr
optstockbycrr

Price Asian option from CRR binomial tree

Price barrier option from CRR binomial tree

Price compound option from CRR binomial tree

Price lookback option from CRR tree
Price stock option from CRR tree

Equal Probabilities Tree Utilities

asianbyeqp
barrierbyeqp
compoundbyeqp
lookbackbyeqp
optstockbyeqp

Price Asian option from EQP binomial tree
 Price barrier option from EQP binomial tree

Price compound option from EQP binomial tree

Price lookback option from EQP binomial tree

Price stock option from EQP binomial tree

Price Asian options using implied trinomial tree (ITT)

Price barrier options using implied trinomial tree (ITT)

Price compound options using implied trinomial tree (ITT)

Price lookback option using implied trinomial tree (ITT)

Price options on stocks using implied trinomial tree (ITT)

Hull-White Utilities

| bondbyhw | Price bond from Hull-White
 interest-rate tree |
| :--- | :--- |
| capbyhw | Price cap instrument from
 Hull-White interest-rate tree |
| cfbyhw | Price cash flows from Hull-White
 interest-rate tree |
| fixedbyhw | Price fixed-rate note from Hull-White
 interest-rate tree |
| floatbyhw | Price floating-rate note from
 Hull-White interest-rate tree |
| floorbyhw | Price floor instrument from
 Hull-White interest-rate tree |
| optbndbyhw | Price bond option from Hull-White
 interest-rate tree |
| optembndbyhw | Price bonds with embedded options
 by Hull-White interest-rate tree |
| swapbyhw | Price swap instrument from
 Hull-White interest-rate tree |
| swaptionbyhw | Price swaption from HW
 interest-rate tree |

Tree Manipulation

bushpath
bushshape
cvtree
mkbush

Price bond from Hull-White
 Price cap instrument from Hull-White interest-rate tree

Price cash flows from Hull-White interest-rate tree

Price fixed-rate note from Hull-White interest-rate tree

Price floating-rate note from Hull-White interest-rate tree

Price floor instrument from Hull-White interest-rate tree

Price bond option from Hull-White Price bonds with embedded options by Hull-White interest-rate tree

Price swap instrument from Price swaption from HW interest-rate tree tree

Retrieve shape of bushy tree
Convert inverse-discount tree to interest-rate tree

Create bushy tree
mktree
mktrintree
treepath
treeshape
trintreepath
trintreeshape

Create recombining binomial tree Create recombining trinomial tree Entries from node of recombining binomial tree

Shape of recombining binomial tree
Entries from node of recombining trinomial tree

Shape of recombining trinomial tree

Derivatives Pricing Options

derivget
derivset
Get derivatives pricing options
Set or modify derivatives pricing options

Pricing and Sensitivity Using Black-Scholes Option Pricing Model

assetbybls
assetsensbybls
cashbybls

Calculate price of asset-or-nothing digital options using Black-Scholes model

Calculate price and sensitivities of asset-or-nothing digital options using Black-Scholes model
Calculate price of cash-or-nothing digital options using Black-Scholes model

| cashsensbybls | Calculate price and sensitivities of cash-or-nothing digital options using Black-Scholes model |
| :---: | :---: |
| chooserbybls | Price European simple chooser options using Black-Scholes model |
| gapbybls | Calculate price of gap digital options using Black-Scholes model |
| gapsensbybls | Calculate price and sensitivities of gap digital options using Black-Scholes model |
| impvbybls | Calculate implied volatility using Black-Scholes option pricing model |
| optstockbybls | Price options using Black-Scholes option pricing model |
| optstocksensbybls | Calculate option prices and sensitivities using Black-Scholes option pricing model |
| supersharebybls | Calculate price of supershare digital options using Black-Scholes model |
| supersharesensbybls | Calculate price and sensitivities of supershare digital options using Black-Scholes model |

Pricing and Sensitivity Using Black Option Pricing Model

capbyblk
floorbyblk
impvbyblk

Price caps using the Black option pricing model

Price floors using the Black option pricing model

Calculate implied volatility using Black option pricing model
optstockbyblk Price options on futures using Black option pricing model

Calculate option prices and sensitivities on futures using Black pricing model

Pricing and Sensitivity Using Longstaff-Schwartz Option Pricing Model

basketbyls
basketsensbyls
basketstockspec

Price basket options using Longstaff-Schwartz model

Calculate price and sensitivities for basket options using Longstaff-Schwartz model

Specify basket stock structure

Pricing and Sensitivity Using Nengiiu Ju Approximation Model

basketbyls
basketsensbyls
basketstockspec

Price basket options using Longstaff-Schwartz model

Calculate price and sensitivities for basket options using Longstaff-Schwartz model

Specify basket stock structure

Pricing and Sensitivity Using Role-Geske-Whaley Option Pricing Model

impvbyrgw
optstockbyrgw
optstocksensbyrgw

Calculate implied volatility using Roll-Geske-Whaley option pricing model for American call option

Calculate American call option prices using Roll-Geske-Whaley option pricing model
Calculate American call option prices and sensitivities using Roll-Geske-Whaley option pricing model

Pricing and Sensitivity Using Bjerksund-Stensland Option Pricing Model

impvbybjs
optstockbybjs
optstocksensbybjs

Calculate implied volatility using Bjerksund-Stensland 2002 option pricing model

Price American options using Bjerksund-Stensland 2002 option pricing model

Calculate American option prices and sensitivities using Bjerksund-Stensland 2002 option pricing model

Pricing and Sensitivity Using Stulz Option Pricing Model

| maxassetbystulz | Calculate European rainbow option
 price on maximum of two risky
 assets using Stulz option pricing |
| :--- | :--- |
| model | |

Instrument Portfolio Handling

instadd
instaddfield
instasian
instbarrier
instbond
instcap
instcf
instcompound

Add types to instrument collection
Add new instruments to instrument collection

Construct Asian option
Construct barrier option
Construct bond instrument
Construct cap instrument
Construct cash flow instrument
Construct compound option

| instdelete | Complement of instrument set by matching conditions |
| :---: | :---: |
| instdisp | Display instruments |
| instfields | List field names |
| instfind | Search instruments for matching conditions |
| instfixed | Construct fixed-rate instrument |
| instfloat | Construct floating-rate instrument |
| instfloor | Construct floor instrument |
| instget | Data from instrument variable |
| instgetcell | Data and context from instrument variable |
| instlength | Count instruments |
| instlookback | Construct lookback option |
| instoptbnd | Construct bond option |
| instoptembnd | Constructor for 'Type', 'OptEmBond' bond with embedded option |
| instoptstock | Construct stock option |
| instselect | Create instrument subset by matching conditions |
| instsetfield | Add or reset data for existing instruments |
| instswap | Construct swap instrument |
| instswaption | Construct swaption instrument |
| insttypes | List types |

Financial Object Structures

classfin
isafin
stockspec

Create financial structure or return financial structure class name

True if input argument is financial structure type or financial object class

Create stock structure

Interest Term Structure

date2time
disc2rate
intenvget
intenvset
rate2disc
ratetimes
time2date

Date

datedisp
Display date entries

Graphical Display

treeviewer
Tree information

Functions - Alphabetical
List

Purpose Price Asian option from CRR binomial tree

Syntax Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Arguments

CRRTree Stock tree structure created by crrtree.
OptSpec NINST-by-1 list of string values 'Call' or 'Put'.
Strike NINST-by-1 vector of strike price values. Each row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle date for every Asian option is set to the valuation date of the stock tree. The Asian argument Settle is ignored.
ExerciseDates For a European option (AmericanOpt $=0$):
NINST-by- 1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option (AmericanOpt = 1):
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.

| AmericanOpt | (Optional) If AmericanOpt $=0$, NaN, or is
 unspecified, the option is a European option. If
 AmericanOpt $=1$, the option is an American
 option. |
| :---: | :--- |
| AvgType | (Optional) String $=$ 'arithmetic ' for arithmetic
 average (default) or 'geometric' for geometric
 average. |
| AvgPrice | (Optional) Scalar representing the average
 price of the underlying asset at Settle. This
 argument is used when AvgDate < Settle.
 Default is the current stock price. |
| AvgDate | (Optional) Scalar representing the date on
 which the averaging period begins. Default $=$
 Settle. |

| Description \quad | Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, |
| :--- | :--- |
| | ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) |
| calculates the value of fixed-and floating-strike Asian options. To | |
| | compute the value of a floating-strike Asian option, specify Strike as |
| | NaN. Fixed-strike Asian options are also known as average price options. |
| | Floating-strike Asian options are also known as average strike options. |

Price is a NINST-by-1 vector of expected prices at time 0 .
Asian options are priced using Hull-White (1993). Consequently, for these options only the root node contains a unique price.

Examples Price a floating-strike Asian option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat;
```


asianbycrr

Set the required values. Other arguments will use defaults.

```
OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';
```

Use asianbycrr to compute the price of the option.

```
Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
    1.2177
```

References

Hull, J., and A. White, "Efficient Procedures for Valuing European and
American Path-Dependent Options," Journal of Derivatives, Volume
1, pp. 21-31.

See Also
crrtree, instasian

Purpose

Price Asian option from EQP binomial tree

Syntax
Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Arguments

| EQPTree | Stock tree structure created by eqptree. |
| :--- | :--- |
| OptSpec | NINST-by-1 list of string values 'Call' or 'Put'. |
| Strike | NINST-by-1 vector of strike price values. Each
 row is the schedule for one option. |
| Settle | NINST-by-1 vector of Settle dates. The settle
 date for every Asian option is set to the valuation
 date of the stock tree. The Asian argument
 Settle is ignored. |
| ExerciseDates | For a European option (AmericanOpt = 0):

 NINST-by-1 vector of exercise dates. Each row
 is the schedule for one option. For a European
 option, there is only one exercise date, the option
 expiry date. |
| For an American option (AmericanOpt = 1): | |
| NINST-by-2 vector of exercise date boundaries.
 For each instrument, the option can be exercised
 on any tree date between or including the pair
 of dates on that row. If only one non-NaN date is | |
| listed, or if ExerciseDates is NINST-by-1, the | |
| option can be exercised between the valuation | |
| date of the stock tree and the single listed | |
| exercise date. | |

| AmericanOpt | (Optional) If AmericanOpt $=0$, NaN, or is
 unspecified, the option is a European option. If
 AmericanOpt $=1$, the option is an American
 option. |
| :--- | :--- |
| AvgType | (Optional) String = 'arithmetic' for arithmetic
 average (default) or 'geometric' for geometric
 average. |
| AvgPrice | (Optional) Scalar representing the average
 price of the underlying asset at Settle. This
 argument is used when AvgDate < Settle. |
| AvgDate | Default is the current stock price.
 (Optional) Scalar representing the date on which
 the averaging period begins. |

Description

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) calculates the value of fixed- and floating-strike Asian options. To compute the value of a floating-strike Asian option, specify Strike as NaN. Fixed-strike Asian options are also known as average price options. Floating-strike Asian options are also known as average strike options.

Price is a NINST-by- 1 vector of expected prices at time 0 .

Examples

Price a floating-strike Asian option using an EQP equity tree.
Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat;
```

Set the required values. Other arguments will use defaults.

```
OptSpec = 'put';
Strike = NaN;
```

```
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';
```

Use asianbyeqp to compute the price of the option.

```
Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ...
```

ExerciseDates)
Price =
1.2724

References
 Hull, J., and A. White, "Efficient Procedures for Valuing European and American Path-Dependent Options," Journal of Derivatives, Volume 1, pp. 21-31.

See Also eqptree, instasian

asianbyitt

Purpose Price Asian options using implied trinomial tree (ITT)

```
Syntax Price = asianbyitt(ITTTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
```


Arguments

| ITTTree | Stock tree structure created by itttree. |
| :--- | :--- |
| OptSpec | NINST-by-1 list of string values 'call' or 'put '. |
| Strike | NINST-by-1 vector of strike price values. Each
 row represents the schedule for one option. |
| Settle | NINST-by-1 vector of Settle dates. The settle
 date for every Asian option is set to the valuation
 date of the stock tree. The Asian argument
 Settle is ignored. |
| | For a European option (AmericanOpt = 0): |
| | NINST-by-1 vector of exercise dates. Each row
 is the schedule for one option. For a European
 option, there is only one exercise date which is
 the option expiry date. |
| For an American option (AmericanOpt = 1): | |
| NINST-by-2 vector of exercise date boundaries.
 For each instrument, the option can be exercised
 on any tree date between or including the pair
 of dates on that row. If only one non-NaN date is | |
| listed, or if ExerciseDates is NINST-by-1, the | |
| option can be exercised between the valuation | |
| date of the stock tree and the single listed | |
| exercise date. | |

| AmericanOpt | (Optional) If AmericanOpt $=0$, NaN, or is
 unspecified, the option is a European option. If
 AmericanOpt $=1$, the option is an American
 option. |
| :--- | :--- |
| AvgType | (Optional) String $=$ 'arithmetic' for arithmetic
 average (default) or 'geometric' for geometric
 average. |
| AvgPrice | (Optional) Scalar representing the average
 price of the underlying asset at Settle. This
 argument is used when AvgDate $<$ Settle.
 Default is the current stock price. |
| AvgDate | (Optional) Scalar representing the date on which
 the averaging period begins. |

Description

Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) calculates the value of fixed- and floating-strike Asian options. To compute the value of a floating-strike Asian option, specify Strike as NaN. Fixed-strike Asian options are also known as average price options. Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.

> Note The Settle date for every Asian option is set to the ValuationDate of the stock tree. The Asian argument, Settle, is ignored.

Examples Price a floating-strike Asian option using an ITT equity tree.
Load the file deriv.mat which provides the ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.

asianbyitt

```
load deriv.mat;
```

Set the required values. Other arguments will use defaults.

```
OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2007';
```

Use asianbyitt to compute the price of the option.

```
Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)
Price =
    1.0778
```


References

See Also instasian, itttree

| Purpose | Calculate price of asset-or-nothing digital options using Black-Scholes model |
| :---: | :---: |
| Syntax | ```Price = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)``` |
| Arguments | |
| | RateSpec
 The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset. |
| | StockSpec Stock specification. See stockspec. |
| | Settle NINST-by-1 vector of settlement or trade dates. |
| | Maturity NINST-by-1 vector of maturity dates. |
| | OptSpec \quad NINST-by-1 cell array of strings 'call' or 'put'. |
| | Strike NINST-by-1 vector of payoff strike price values. |
| Description | Price = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes asset-or-nothing option prices using the Black-Scholes option pricing model. |
| | Price is a NINST-by-1 vector of expected option prices. |
| Examples | Consider two asset-or-nothing put options on a nondividend paying stock with a strike of 95 and 93 and expiring on January 30, 2009. On November 3, 2008 the stock is trading at 97.50 . Using this data, calculate the price of the asset-or-nothing put options if the risk-free rate is 4.5% and the volatility is 22%. |
| | Create the RateSpec: |
| | Settle = 'Nov-3-2008'; |
| | $\begin{aligned} & \text { Maturity = 'Jan-30-2009'; } \\ & \text { Rates = 0.045; } \end{aligned}$ |

```
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding);
```

Define the StockSpec:

```
AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice);
```

Define the put options:

```
OptSpec = {'put'};
Strike = [95;93];
```

Calculate the price:

```
Paon = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Paon =
    33.7666
    26.9662
```


See Also

assetsensbybls, cashbybls, gapbybls, supersharebybls

Purpose

Syntax

```
PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike)
PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, OutSpec)
```


Arguments

> For example, OutSpec = \{'Price'; 'Lamba'; 'Rho' $\}$ specifies that the output should be Price, Lambda, and Rho, in that order.
> To invoke from a function: [Price, Lambda, Rho] = assetsensbybls(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})
> OutSpec $=\{' A l l '\}$ specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.
> - Default is OutSpec =\{'Price'\}.

Description

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes asset-or-nothing option prices using the Black-Scholes option pricing model.

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, OutSpec) includes the parameter/value pairs defined for OutSpec, and computes asset-or-nothing option prices and sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and sensitivities.

Examples

Consider two asset-or-nothing put options on a nondividend paying stock with a strike of 95 and 93 and expiring on January 30, 2009. On November 3, 2008 the stock is trading at 97.50 . Using this data, calculate the price and sensitivity of the asset-or-nothing put options if the risk-free rate is 4.5% and the volatility is 22%.

Create the RateSpec:

```
Settle = 'Nov-3-2008';
```

```
Maturity = 'Jan-30-2009';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding);
```

Define the StockSpec:

```
AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice);
```

Define the put options:

```
OptSpec = {'put'};
Strike = [95;93];
```

Calculate the delta, price, and gamma:

```
OutSpec = { 'delta';'price';'gamma'};
[Delta, Price, Gamma] = assetsensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)
Delta =
    -3.0833
    -2.8337
Price =
    33.7666
    26.9662
Gamma =
    0.0941
```


Purpose

Price barrier option from CRR binomial tree

Syntax
[Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options)

Arguments

| CRRTree | Stock tree structure created by crrtree. |
| :--- | :--- |
| OptSpec | NINST-by-1 list of string values 'Call' or 'Put '. |
| Strike | NINST-by-1 vector of strike price values. Each
 row is the schedule for one option. |
| Settle | NINST-by-1 vector of Settle dates. The settle
 date for every barrier option is set to the
 valuation date of the stock tree. The barrier
 argument Settle is ignored. |
| ExerciseDates | For a European option (AmericanOpt = 0): |
| NINST-by-1 vector of exercise dates. Each row
 is the schedule for one option. For a European
 option, there is only one exercise date, the
 option expiry date. | |
| For an American option (AmericanOpt = 1): | |
| NINST-by-2 vector of exercise date boundaries.
 For each instrument, the option can be exercised
 on any tree date between or including the pair
 of dates on that row. If only one non-NaN date is | |
| listed, or if ExerciseDates is NINST-by-1, the | |
| option can be exercised between the valuation | |
| date of the stock tree and the single listed | |
| exercise date. | |

barrierbycrr

| AmericanOpt | If AmericanOpt $=0, N a N$, or is unspecified, the option is a European option. If AmericanOpt = 1, the option is an American option. |
| :---: | :---: |
| BarrierSpec | List of string values: |
| | 'UI': Up Knock In |
| | 'U0': Up Knock Out |
| | ' DI ' : Down Knock In |
| | 'DO ' : Down Knock Out |
| Barrier | Vector of barrier values. |
| Rebate | (Optional) NINST-by-1 matrix of rebate values. Default $=0$. For Knock-in options, the rebate is paid at expiry. For Knock-out options, the rebate is paid when the barrier is reached. |
| Options | (Optional) Derivatives pricing options structure created with derivset. |

See instbarrier for a description of barrier contract arguments.

Description

Examples
[Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options) computes the price of barrier options using a CRR binomial tree.

Price is a NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

Price a barrier option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat;
```

Set the required values. Other arguments will use defaults.

```
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;
Price = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)
Price =
```

12.1272

References Derman, E., I. Kani, D. Ergener and I. Bardhan, "Enhanced Numerical Methods for Options with Barriers," Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

See Also crrtree, instbarrier

barrierbyeqp

Purpose Price barrier option from EQP binomial tree

Syntax
[Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options)

Arguments

| EQPTree | Stock tree structure created by eqptree. | | |
|---|---|---|---|
| OptSpec | NINST-by-1 list of string values 'Call' or 'Put'. |
| Strike | NINST-by-1 vector of strike price values. Each
 row is the schedule for one option. |
| Settle | NINST-by-1 vector of Settle dates. The settle
 date for every barrier option is set to the
 valuation date of the stock tree. The barrier
 argument Settle is ignored. |
| | For a European option (AmericanOpt = 0): |
| | NINST-by-1 vector of exercise dates. Each row
 is the schedule for one option. For a European
 option, there is only one exercise date, the option |
| expiry date. | |\quad| For an American option (AmericanOpt = 1): |
| :--- |
| NINST-by-2 vector of exercise date boundaries. |
| For each instrument, the option can be exercised
 on any tree date between or including the pair
 of dates on that row. If only one non-NaN date is
 listed, or if ExerciseDates is NINST-by-1, the |
| option can be exercised between the valuation |
| date of the stock tree and the single listed |
| exercise date. |

barrierbyeqp

| AmericanOpt | If AmericanOpt $=0$, NaN, or is unspecified, the
 option is a European option. If AmericanOpt $=$
 1, the option is an American option. |
| :--- | :--- |
| BarrierSpec | List of string values:
 'UI ' : Up Knock In |
| | 'UO ' : Up Knock Out |
| Barrier | 'DI ' : Down Knock In |
| Rebate | 'DO ' D Down Knock Out |
| | Vector of barrier values.
 (Optional) NINST-by-1 matrix of rebate values. |
| Options | Default $=0$. For Knock-in options, the rebate
 is paid at expiry. For Knock-out options, the
 rebate is paid when the barrier is reached. |
| | (Optional) Derivatives pricing options structure
 created with derivset. |

See instbarrier for a description of barrier contract arguments.

| Description | [Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike,
 ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
 Options) computes the price of barrier options using an equal
 probabilities binomial tree. |
| :--- | :--- |
| Price is a NINST-by-1 vector of expected prices at time 0. | |
| Examples | PriceTree is a tree structure with a vector of instrument prices at
 each node. |
| \quadPrice a barrier option using an EQP equity tree. | |
| Load the file deriv.mat, which provides EQPTree. The EQPTree
 structure contains the stock specification and time information needed
 to price the option. | |

barrierbyeqp

```
load deriv.mat;
```

Set the required values. Other arguments will use defaults.

```
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 102;
Price = barrierbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)
Price =
```

 12.2632
 References Derman, E., I. Kani, D. Ergener and I. Bardhan, "Enhanced Numerical Methods for Options with Barriers," Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

See Also eqptree, instbarrier

Purpose

Price barrier options using implied trinomial tree (ITT)

Syntax
[Price, PriceTree] = barrierbyitt(ITTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options)

Arguments

barrierbyitt

| Americanopt | If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European option. If AmericanOpt = 1, the option is an American option. |
| :---: | :---: |
| BarrierSpec | List of string values: |
| | 'UI ' : Up Knock In |
| | 'U0': Up Knock Out |
| | 'DI' : Down Knock In |
| | 'DO': Down Knock Out |
| Barrier | Vector of barrier values. |
| Rebate | (Optional) NINST-by-1 matrix of rebate values. Default $=0$. For Knock In options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the barrier is reached. |
| Options | (Optional) Derivatives pricing options structure created with derivset. |

See instbarrier for a description of barrier contract arguments.

Description

[Price, PriceTree] = barrierbyitt(ITTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate, Options) computes the price of barrier options using an implied trinomial tree.

Price is a NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

Note The Settle date for every barrier option is set to the ValuationDate of the stock tree. The barrier argument, Settle, is ignored.

Examples Price a barrier option using an ITT tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.

```
load deriv.mat;
```

Set the required values. Other arguments will use defaults.

```
OptSpec = 'Call';
Strike = 85;
Settle = '01-Jan-2006';
ExerciseDates = '31-Dec-2008';
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 115;
Price = barrierbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,...
BarrierSpec,Barrier)
Price =
2.407
```

References

Derman, E., I. Kani, D. Ergener, and I. Bardhan, "Enhanced Numerical
Methods for Options with Barriers," Financial Analysts Journal,
Nov.-Dec.,1995.

See Also
instbarrier, itttree

basketbyju

Purpose Price European basket options using Nengjiu Ju approximation model

```
Syntax Price = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, Maturity)
```

Description

Inputs

Outputs Price

Price of the basket option.

Examples

RateSpec

BasketStockSpec

 stocks specification, see basketstockspec.OptSpec Strike

Scalar for the option strike price.

Settle

 serial date number.Maturity

Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset.

BasketStock specification. For information on the basket of

String or 2-by-1 cell array of the strings 'call' or 'put'.

Scalar of the settlement or trade date specified as a string or

Maturity date specified as a string or serial date number.

Find a European call basket option of two stocks. Assume that the stocks are currently trading at $\$ 10$ and $\$ 11.50$ with annual volatilities

basketbyiu

of 20% and 25%, respectively. The basket contains one unit of the first stock and one unit of the second stock. The correlation between the assets is 30%. On January 1, 2009, an investor wants to buy a 1 -year call option with a strike price of $\$ 21.50$. The current annualized, continuously compounded interest rate is 5%. Use this data to compute the price of the call basket option with the Ju approximation model.

```
Settle = 'Jan-1-2009';
Maturity = 'Jan-1-2010';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
Corr = [1 0.30; 0.30 1];
% Define BasketStockSpec
AssetPrice = [10;11.50];
Volatility = [0.2;0.25];
Quantity = [1;1];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
%Compute the price of the call basket option
OptSpec = {'call'};
Strike = 21.5;
PriceCorr30 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)
This returns:
PriceCorr30 =
```

2.12214

basketbyiu

Compute the price of the basket instrument for these two stocks with a correlation of 60%. Then compare this cost to the total cost of buying two individual call options:

```
Corr = [1 0.60; 0.60 1];
% Define the new BasketStockSpec
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
%Compute the price of the call basket option with Correlation = -0.60
PriceCorr60 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)
```

This returns:

```
PriceCorr60 =
```

2.27566

The following table summarizes the sensitivity of the option to correlation changes. In general, the premium of the basket option decreases with lower correlation and increases with higher correlation.

| Correlation | -0.60 | -0.30 | 0 | 0.30 | 0.60 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Premium | 1.52830 | 1.76006 | 1.9527 | 2.1221 | 2.2756 |

Compute the cost of two vanilla 1-year call options using the Black-Scholes (BLS) model on the individual assets:

```
StockSpec = stockspec(Volatility, AssetPrice);
StrikeVanilla= [10;11.5];
PriceVanillaOption = optstockbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, StrikeVanilla)
```

This returns:

```
PriceVanillaOption =
```

1.0451
1.4186

Find the total cost of buying two individual call options:

```
sum(PriceVanillaOption)
```

This returns: ans=2.4637

The total cost of purchasing two individual call options is $\$ 2.4637$, compared to the maximum cost of the basket option of $\$ 2.27$ with a correlation of 60%.

[^0]
basketbyls

Purpose Price basket options using Longstaff-Schwartz model

```
Syntax Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates)
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates, 'ParameterName', ParameterValue ...)
```


Description

Inputs

RateSpec
Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks specification, see basketstockspec.

OptSpec
String or 2-by-1 cell array of the strings 'call' or 'put'. Strike

The option strike price:

- For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda) vector of strike price.
- For an American option, Strike is a scalar vector of the strike price.

Settle

Scalar of the settlement or trade date specified as a string or serial date number.

ExerciseDates

The exercise date for the option:

- For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between, or including, the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

Parameter-Value Pairs

AmericanOpt
Parameter values are a scalar flag.

- 0 - European/Bermuda
- 1 - American

Default: 0
NumPeriods

basketbyls

Parameter value is a scalar number of simulation periods per trial. NumPeriods is considered only when pricing European basket options. For American and Bermuda basket options, NumPeriod equals the number of exercise days during the life of the option.

Default: 100

NumTrials

Parameter value is a scalar number of independent sample paths (simulation trials).

Default: 1000

Outputs Price

Price of the basket option.

Examples

Find an American call basket option of three stocks. The stocks are currently trading at $\$ 35, \$ 40$ and $\$ 45$ with annual volatilities of 12%, 15% and 18%, respectively. The basket contains 33.33% of each stock. Assume the correlation between all pair of assets is 50%. On May 1 , 2009, an investor wants to buy a three-year call option with a strike price of $\$ 42$. The current annualized continuously compounded interest rate is 5%. Use this data to compute the price of the call basket option using the Longstaff-Schwartz model.

```
Settle = 'May-1-2009';
Maturity = 'May-1-2012';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric,
% and have ones along the main diagonal.
```

```
Corr =[[1 0.50 0.50; 0.50 1 0.50;0.50 0.50 1];
% Define BasketStockSpec
AssetPrice = [35;40;45];
Volatility = [0.12;0.15;0.18];
Quantity = [0.333;0.333;0.333];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
% Compute the price of the call basket option
OptSpec = {'call'};
Strike = 42;
AmericanOpt = 1; % American option
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt)
```

This returns:

Price =

5.60499

Increase the number of simulation trials to 2000 to give the following results:

```
NumTrial = 2000;
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt,'NumTrials',NumTrial)
Price =
    5.6665
```

References Longstaff, F.A., and E.S. Schwartz, "Valuing American Options by Simulation: A Simple Least-Squares Approach", The Review of Financial Studies, Vol. 14, No. 1, Spring 2001, pp. 113-147.
See Alsobasketstockspec | basketsensbyls

basketbyls

How To
- "Basket Option" on page 3-25

Purpose

Syntax
\section*{Description}

Inputs

Calculate European basket options price and sensitivities using Nengjiu Ju approximation model

```
PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, Maturity)
PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity, 'ParameterName', ParameterValue ...)
PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec,
            ,
```

PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity) calculates prices and sensitivities for basket options using the Nengjiu Ju approximation model.

PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity, 'ParameterName', ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. 'ParameterValue is the value corresponding to 'ParameterName'. Specify parameter-value pairs in any order. Names are case-insensitive and partial string matches are allowable, if no ambiguities exist.

RateSpec

Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks specification, see basketstockspec.

OptSpec
String or 2-by-1 cell array of the strings 'call' or 'put'.
Strike

basketsensbyju

Scalar of the option strike price.

Settle

Scalar of the settlement or trade date specified as a string or serial date number.

Maturity
Maturity date, specified as a string or serial date number.

Parameter-Value Pairs

OutSpec
Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. For example, OutSpec = \{'Price', 'Lamba', 'Rho'\} specifies that the output is Price, Lambda, and Rho, in that order.

OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.

Default: OutSpec = \{'Price' $\}$
UndIdx
Scalar of the indice of the underlying instrument to compute the sensitivity.

Default: UndIdx = []

Outputs PriceSens

Expected prices or sensitivities values for the basket option.

Examples

Find a European call basket option of five stocks. Assume that the basket contains:

- 5% of the first stock trading at $\$ 110$
- 15% of the second stock trading at $\$ 75$
- 20% of the third stock trading at $\$ 40$
- 25% of the fourth stock trading at $\$ 125$
- 35% of the fifth stock trading at $\$ 92$

These stocks have annual volatilities of 20% and the correlation between the assets is zero. On May 1, 2009, an investor wants to buy a 1 -year call option with a strike price of $\$ 90$. The current annualized, continuously compounded interest is 5%. Use this data to compute price and delta of the call basket option with the Ju approximation model.

```
Settle = 'May-1-2009';
Maturity = 'May-1-2010';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
NumInst = 5;
InstIdx = ones(NumInst,1);
Corr = diag(ones(5,1), 0);
% Define BasketStockSpec
AssetPrice = [110; 75; 40; 125; 92];
Volatility = 0.2;
Quantity = [0.05; 0.15; 0.2; 0.25; 0.35];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
```


basketsensbyju

```
% Compute the price of the call basket option. Calculate also the delta
% of the first stock.
OptSpec = {'call'};
Strike = 90;
OutSpec = {'Price','Delta'};
UndIdx = 1; % First element in the basket
[Price, Delta] = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ...
Maturity, 'OutSpec', OutSpec,'UndIdx', UndIdx)
```

This returns:

```
Price =
```

5.16098

Delta =
0.02972

Compute Delta with respect to the second asset:

```
UndIdx = 2; % Second element in the basket
OutSpec = {'Delta'};
Delta = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity, ...
'OutSpec',OutSpec,'UndIdx',UndIdx)
Delta =
    0.09063
```References Nengjiu Ju, "Pricing Asian and Basket Options Via Taylor Expansion",Journal of Computational Finance, Vol. 5, 2002.
See Also basketstockspec | basketbyju
How To - "Basket Option" on page 3-25

\section*{basketsensbyls}
\begin{tabular}{|c|c|}
\hline Purpose & Calculate price and sensitivities for basket options using Longstaff-Schwartz model \\
\hline Syntax & ```
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates)
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates, 'ParameterName', ParameterValue ...)
``` \\
\hline Description & \begin{tabular}{l}
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ExerciseDates) prices basket options using the Longstaff-Schwartz model. \\
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ExerciseDates, 'ParameterName', ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. 'Parametervalue is the value corresponding to 'ParameterName'. Specify parameter-value pairs in any order. Names are case-insensitive and partial string matches are allowable, if no ambiguities exist.
\end{tabular} \\
\hline Inputs & RateSpec \\
\hline & \begin{tabular}{l}
Annualized, continuously compounded rate term structure. For more information on the interest rate specification, see intenvset. \\
BasketStockSpec \\
BasketStock specification. For information on the basket of stocks specification, see basketstockspec.
\end{tabular} \\
\hline & OptSpec \\
\hline & String or 2-by-1 cell array of the strings 'call' or 'put'. Strike \\
\hline & The option strike price: \\
\hline
\end{tabular}

\section*{basketsensbyls}
- For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES (Bermuda) vector of strike price.
- For an American option, Strike is a scalar vector of strike price.

\section*{Settle}

Scalar of settlement or trade date.
ExerciseDates
The exercise date for the option:
- For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only one ExerciseDate on the option expiry date.
- For an American option, ExerciseDates is a 1-by-2 vector of exercise date boundaries. The option exercises on any date between or including the pair of dates on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option exercises between the Settle date and the single listed ExerciseDate.

\section*{Parameter-Value Pairs}

AmericanOpt
Parameter values are a scalar flag.
- 0 - European/Bermuda
- 1 - American

Default: 0

NumPeriods

\section*{basketsensbyls}

Parameter value is a scalar number of simulation periods. NumPeriods is considered only when pricing European basket options. For American and Bermuda basket options, NumPeriod equals the number of exercise days during the life of the option.

Default: 100

\section*{NumTrials}

Parameter value is a scalar number of independent sample paths (simulation trials).

Default: 1000

\section*{OutSpec}

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. For example, OutSpec = \{'Price', 'Lamba', 'Rho'\} specifies that the output is Price, Lambda, and Rho, in that order.

OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.

Default: OutSpec = \{'Price' \(\}\)

\section*{UndIdx}

Scalar of the indice of the underlying instrument to compute the sensitivity.

Default: UndIdx = [ ]

\section*{basketsensbyls}

\section*{Outputs \\ PriceSens}

Expected prices or sensitivities values.
Examples Find a European put basket option of two stocks. The basket contains \(50 \%\) of each stock. The stocks are currently trading at \(\$ 90\) and \(\$ 75\), with annual volatilities of \(15 \%\). Assume that the correlation between the assets is zero. On May 1, 2009, an investor wants to buy a one-year put option with a strike price of \(\$ 80\). The current annualized, continuously compounded interest is \(5 \%\). Use this data to compute price and delta of the put basket option with the Longstaff-Schwartz approximation model.
```

Settle = 'May-1-2009';
Maturity = 'May-1-2010';
% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);
% Define the Correlation matrix. Correlation matrices are symmetric,
% and have ones along the main diagonal.
NumInst = 2;
InstIdx = ones(NumInst,1);
Corr = diag(ones(NumInst,1), 0);
% Define BasketStockSpec
AssetPrice = [90; 75];
Volatility = 0.15;
Quantity = [0.50; 0.50];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);
% Compute the price of the put basket option. Calculate also the delta
% of the first stock.
OptSpec = {'put'};

```

\section*{basketsensbyls}
```

Strike = 80;
OutSpec = {'Price','Delta'};
UndIdx = 1; % First element in the basket
[Price, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

```

This returns:
```

Price =

```
1.08519

Delta =
\(-0.10311\)

Compute the Price and Delta of the basket with a correlation of \(-20 \%\) :
```

NewCorr = [11 -0.20; -0.20 1];
% Define the new BasketStockSpec.
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, NewCorr);
% Compute the price and delta of the put basket option.
[Price, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)
Price =
0.83903
Delta =
-0.08847

```

\section*{basketsensbyls}

\author{
References Longstaff, F.A., and E.S. Schwartz, "Valuing American Options by Simulation: A Simple Least-Squares Approach", The Review of Financial Studies,Vol. 14, No. 1, Spring 2001, pp. 113-147. \\ See Also basketstockspec | basketbyls \\ How To . "Basket Option" on page 3-25
}

Purpose
Specify basket stock structure

\author{
Syntax \\ \section*{Description}
}

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation)
BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, 'ParameterName',ParameterValue ...)

\section*{Inputs}

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation) creates a basket stock structure.

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, 'ParameterName', ParameterValue ...) accepts optional inputs as one or more comma-separated parameter/value pairs. 'ParameterName' is the name of the parameter inside single quotes. 'ParameterValue is the value corresponding to 'ParameterName'. Specify parameter-value pairs in any order. Names are case-insensitive and partial string matches are allowable, if no ambiguities exist.

\section*{Sigma}

NINST-by-1 vector of decimal annual price volatility of the underlying security.

\section*{AssetPrice}

NINST-by- 1 vector of underlying asset price values at time 0.

\section*{Quantity}

NINST-by-1 vector of quantities of the instruments contained in the basket.

\section*{Correlation}

NINST-by-NINST matrix of correlation values.

\section*{Parameter-Value Pairs}

DividendAmounts

\section*{basketstockspec}

NINST-by- 1 cell array specifying the dividend amounts for basket instruments. Each element of the cell array is a 1-by-NDIV row vector of cash dividends or a scalar representing a continuous annualized dividend yield for the corresponding instrument.

\section*{DividendType}

NINST-by- 1 cell array of strings specifying each stock's dividend type. Dividend type must be either cash for actual dollar dividends or continuous for continuous dividend yield. .

\section*{ExDividendDates}

NINST-by- 1 cell array specifying the ex-dividend dates for the basket instruments. Each row is a 1-by-NDIV matrix of ex-dividend dates for cash type. For rows that correspond to basket instruments with continuous dividend type, the cell is empty. If none of the basket instruments pay continuous dividends, do not specify ExDividendDates.

\section*{Outputs}

Examples

BasketStockSpec
Structure encapsulating the properties of a basket stock structure.
Find a basket option of three stocks. The stocks are currently trading at \(\$ 56, \$ 92\) and \(\$ 125\) with annual volatilities of \(20 \%, 12 \%\) and \(15 \%\), respectively. The basket option contains \(25 \%\) of the first stock, \(40 \%\) of the second stock, and \(35 \%\) of the third. The first stock provides a continuous dividend of \(1 \%\), while the other two provide no dividends. The correlation between the first and second asset is \(30 \%\), between the second and third asset \(11 \%\), and between the first and third asset \(16 \%\). Use this data to create the BasketStockSpec structure:
```

AssetPrice = [56;92;125];
Sigma = [0.20;0.12;0.15];
% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
NumInst = 3;

```
```

Corr = zeros(NumInst,1);
Corr(1,2) = .30;
Corr(2,3) = .11;
Corr(1,3) = .16;
Corr = triu(Corr,1) + tril(Corr',-1) + diag(ones(NumInst,1), 0);
% Define dividends
DivType = cell(NumInst,1);
DivType{1}='continuous';
DivAmounts = cell(NumInst,1);
DivAmounts{1} = 0.01;
Quantity = [0.25; 0.40; 0.35];
BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Corr, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts)

```

This returns:

\section*{BasketStockSpec =}
\begin{tabular}{rl} 
FinObj: & 'BasketStockSpec' \\
Sigma: & {\([3 \times 1\) double] } \\
AssetPrice: \([3 \times 1\) double] \\
Quantity: \([3 \times 1\) double] \\
Correlation: \([3 \times 3\) double] \\
DividendType: \(\{3 \times 1\) cell\} \\
videndAmounts: \(\{3 \times 1\) cell\} \\
DividendDates: \(\{3 \times 1\) cell\}
\end{tabular}

Examine the BasketStockSpec structure:
>>BasketStockSpec.Correlation ans =
\begin{tabular}{lll}
1.0000 & 0.3000 & 0.1600 \\
0.3000 & 1.0000 & 0.1100
\end{tabular}

\section*{basketstockspec}
\[
\begin{array}{lll}
0.1600 & 0.1100 & 1.0000
\end{array}
\]

Find a basket option of two stocks. The stocks are currently trading at \(\$ 60\) and \(\$ 55\) with volatilities of \(30 \%\) per annum. The basket option contains \(50 \%\) of each stock. The first stock provides a cash dividend of \(\$ 0.25\) on May 1, 2009 and September 1, 2009. The second stock provides a continuous dividend of \(3 \%\). The correlation between the assets is \(40 \%\). Use this data to create the structure BasketStockSpec:
```

AssetPrice = [60;55];
Sigma = [0.30;0.30];
% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
Correlation = [1 0.40;0.40 1];
% Define dividends
NumInst = 2;
DivType = cell(NumInst,1);
DivType{1}='cash';
DivType{2}=' continuous';
DivAmounts = cell(NumInst,1);
DivAmounts{1} = [0.25 0.25];
DivAmounts{2} = 0.03;
ExDates = cell(NumInst,1);
ExDates{1} = {'May-1-2009' 'Sept-1-2009'};
Quantity = [0.5; 0.50];
BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts, 'ExDividendDates',ExDates)

```

This returns:
BasketStockSpec =
FinObj: 'BasketStockSpec'Sigma: [2x1 double]
AssetPrice: [2x1 double]
Quantity: [2x1 double]Correlation: [2x2 double]DividendType: \{2x1 cell\}
DividendAmounts: \{2x1 cell\}
ExDividendDates: \{2x1 cell\}
Examine the BasketStockSpec structure:
```

>>BasketStockSpec.DividendType

```
```

ans =

```
    'cash'
    'continuous'
See Also basketbyls | basketbyju | basketsensbyju | basketsensbyls | stockspec | intenvset
How To - "Basket Option" on page 3-25

\section*{bdtprice}

\section*{Purpose Instrument prices from BDT interest-rate tree}
```

Syntax [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

```

\section*{Arguments}

\section*{Description}
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with bdttree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by- 1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are:
- bondbybdt: Price a bond from a BDT tree.
- capbybdt: Price a cap from a BDT tree.
- cfbybdt: Price an arbitrary set of cash flows from a BDT tree.
- fixedbybdt: Price a fixed-rate note from a BDT tree.
- floatbybdt: Price a floating-rate note from a BDT tree.
- floorbybdt: Price a floor from a BDT tree.
- optbndbybdt: Price a bond option from a BDT tree.
- optembndbybdt: Price a bond with embedded option by a BDT tree.
- swapbybdt: Price a swap from a BDT tree.
- swaptionbybdt: Price a swaption from a BDT tree.

\section*{Examples}

Load the BDT tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});
instdisp(BDTSubSet)

Index	Type	CouponRate Settle	Maturity	Period	Name ...	
1	Bond	0.1	$01-$ Jan-2000	$01-$ Jan-2003	1	10% bond
2	Bond	0.1	$01-J a n-2000$	$01-J a n-2004$	2	10% bond

Index	Type Strike Settle	Maturity	CapReset...	Name ...	
3	Cap	0.15	01 -Jan-2000	01-Jan-2004	1

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

```

\section*{bdtprice}

\section*{Price =}
95.5030
93.9079
1.4863

You can use treeviewer to see the prices of these three instruments along the price tree.


First 10\% Bond (Maturity 2003)


Second 10\% Bond (Maturity 2004)


See Also
bdtsens, bdttree, instadd, intenvprice, intenvsens

\title{
Purpose \\ Instrument prices and sensitivities from BDT interest-rate tree
}
```

Syntax
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options)

```

\section*{Arguments}

BDTTree Interest-rate tree structure created by bdttree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type. Each type can have different data fields. The stored data field is a row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the bdttree function. NINST instruments from a financial instrument variable, InstSet, are priced. bdtsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to bdttree. See bdttree for information on the observed yield curve.

Gamma is an NINST-by- 1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to bdttree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility
\(\sigma(t, T)\). Vega is computed by finite differences in calls to bdttree. See bdtvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{load deriv.mat;} \\
\hline \multicolumn{8}{|l|}{BDTSubSet = instselect(BDTInstSet,'Type', \{'Bond', 'Cap'\});} \\
\hline \multicolumn{8}{|l|}{instdisp(BDTSubSet)} \\
\hline \multicolumn{5}{|l|}{Index Type CouponRate Settle} & Maturity & Period & Name \\
\hline \multirow[t]{2}{*}{nd} & Bond & 0.1 & & 01-Jan-2000 & 01-Jan-2003 & 1 & 10\% Во \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{nd} & Bond & 0.1 & & 01-Jan-2000 & 01-Jan-2004 & 2 & 10\% Во \\
\hline & & & & & & & \\
\hline \multicolumn{5}{|l|}{Index Type Strike Settle Matur} & CapR & et... & Name \\
\hline 3 & Cap & 0.15 & \multicolumn{2}{|l|}{01-Jan-2000 01-J} & -2004 1 & & 15\% Cap \\
\hline \multicolumn{8}{|l|}{[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)} \\
\hline \multicolumn{8}{|l|}{Warning: Not all cash flows are aligned with the tree. Result will be approximated.} \\
\hline
\end{tabular}

\section*{bdtsens}
```

Delta =
-232.6681
-281.0517
78.3776
Gamma =
1.0e+003 *
0.8037
1.1819
0.7490

```

See Also
bdtprice, bdttree, bdtvolspec, instadd

\section*{Purpose}

Specify time structure for BDT interest-rate tree

\section*{Syntax}

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
\begin{tabular}{|c|c|}
\hline ValuationDate & Scalar date marking the pricing date and first observation in the tree. Specify as serial date number or date string. \\
\hline Maturity & Number of levels (depth) of the tree. A number of levels (NLEVELS)-by-1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order. \\
\hline \multirow[t]{7}{*}{Compounding} & (Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default \(=1\). This argument determines the formula for the discount factors: \\
\hline & Compounding \(=1,2,3,4,6,12\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and T is the time in periodic units; for example, \(\mathrm{T}=\) \(F\) is 1 year. \\
\hline & Compounding \(=365\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
\hline & Compounding \(=-1\) \\
\hline & Disc \(=\exp (-T * Z)\), where \(T\) is time in years. \\
\hline
\end{tabular}

\section*{bdttimespec}

Description TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for a BDT tree and determines the mapping between dates and time for rate quoting.
TimeSpec is a structure specifying the time layout for bdttree. The state observation dates are [ValuationDate; Maturity(1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{Examples}

Specify a five-period tree with annual nodes. Use annual compounding to report rates.
```

Compounding = 1;
ValuationDate = '01-01-2000';
Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
FinObj: 'BDTTimeSpec'
ValuationDate: 730486
Maturity: [5x1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

```

\section*{See Also}
bdttree, bdtvolspec
\begin{tabular}{ll} 
Purpose & Construct BDT interest-rate tree \\
Syntax & BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) \\
Arguments &
\end{tabular}
\begin{tabular}{cl} 
VolSpec & \begin{tabular}{l} 
Volatility process specification. See bdtvolspec for \\
information on the volatility process.
\end{tabular} \\
RateSpec & \begin{tabular}{l} 
Interest-rate specification for the initial rate curve. \\
See intenvset for information on declaring an \\
interest-rate variable.
\end{tabular} \\
TimeSpec & \begin{tabular}{l} 
Tree time layout specification. Defines the observation \\
dates of the BDT tree and the Compounding rule for \\
date to time mapping and price-yield formulas. See \\
bdttimespec for information on the tree structure.
\end{tabular}
\end{tabular}

\section*{Description \\ Examples \\ BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree. \\ Using the data provided, create a BDT volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a BDT tree with bdttree.}
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
RateSpec = intenvset('Compounding', Compounding,...

```

\section*{bdttree}
```

 'ValuationDate', ValuationDate,...
 'StartDates', StartDate,...
 'EndDates', EndDates,...
 'Rates', Rates);
 BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

```

Use treeviewer to observe the tree you have created.
treeviewer(BDTTree)


See Also
bdtprice, bdttimespec, bdtvolspec, intenvset

\section*{Purpose}

Specify BDT interest-rate volatility process
```

Syntax
Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve,
InterpMethod)

```

\section*{Arguments}
\begin{tabular}{ll} 
ValuationDate & \begin{tabular}{l} 
Scalar value representing the observation date \\
of the investment horizon.
\end{tabular} \\
VolDates & \begin{tabular}{l} 
Number of points (NPOINTS) -by-1 vector of yield \\
volatility end dates.
\end{tabular} \\
VolCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of yield volatility values in \\
decimal form.
\end{tabular} \\
InterpMethod & \begin{tabular}{l} 
(Optional) Interpolation method. Default is \\
'linear'. See interp1 for more information.
\end{tabular}
\end{tabular}

\section*{Description}

Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve, InterpMethod) creates a structure specifying the volatility for bdttree.

\section*{Examples}

Using the data provided, create a BDT volatility specification (VolSpec).
```

ValuationDate = '01-01-2000';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)
BDTVolSpec =
FinObj: 'BDTVolSpec'
ValuationDate: 730486
VolDates: [5x1 double]
VolCurve: [5x1 double]

```

\section*{bdtvolspec}

\section*{VolInterpMethod: 'linear'}

\section*{See Also bdttree, interp1}

\section*{Purpose}

Instrument prices from Black-Karasinski interest-rate tree

\section*{Syntax}
[Price, PriceTree] = bkprice(BKTree, InstSet, Options)

\section*{Arguments}

\section*{Description}
[Price, PriceTree] = bkprice(BKTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with bktree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.
PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
bkprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

\section*{bkprice}

Related single-type pricing functions are:
- bondbybk: Price a bond from a Black-Karasinski tree.
- capbybk: Price a cap from a Black-Karasinski tree.
- cfbybk: Price an arbitrary set of cash flows from a Black-Karasinski tree.
- fixedbybk: Price a fixed-rate note from a Black-Karasinski tree.
- floatbybk: Price a floating-rate note from a Black-Karasinski tree.
- floorbybk: Price a floor from a Black-Karasinski tree.
- optbndbybk: Price a bond option from a Black-Karasinski tree.
- optembndbybk: Price a bond with embedded option by a Black-Karasinski tree.
- swapbybk: Price a swap from a Black-Karasinski tree.
- swaptionbybk: Price a swaption from a Black-Karasinski tree.

\section*{Examples}

Load the BK tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});
instdisp(BKSubSet)

Index	Type	CouponRate Settle	Maturity	Period	Name ...	
1	Bond	0.03	01-Jan-2004	01 -Jan-2007	1	3% bond
2	Bond	0.03	01-Jan-2004	01 -Jan-2008	2	3% bond

Index	Type	Strike Settle	Maturity	CapReset...	Name ...
3	Cap	0.04	$01-J a n-2004$	$01-J a n-2008$	1

[Price, PriceTree] = bkprice(BKTree, BKSubSet);

```

\section*{Price =}
98.1096
95.6734
2.2706

You can use treeviewer to see the prices of these three instruments along the price tree.
```

treeviewer(PriceTree, BKSubSet)

```

\section*{bkprice}


First 3\% Bond (Maturity 2007)


Second 3\% Bond (Maturity 2008)


See Also
bksens, bktree, instadd, intenvprice, intenvsens

\section*{Purpose}

Syntax

Arguments

\section*{Description}

Instrument prices and sensitivities from Black-Karasinski interest-rate tree
[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet, Options)

BKTree Interest-rate tree structure created by bktree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type. Each type can have different data fields. The stored data field is a row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.
[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the bktree function. NINST instruments from a financial instrument variable, InstSet, are priced. bksens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to bktree. See bktree for information on the observed yield curve.

Gamma is an NINST-by- 1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to bktree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility \(\sigma(t, T)\).

\section*{bksens}

Vega is computed by finite differences in calls to bktree. See bkvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by- 1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

\section*{Examples}

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'});
instdisp(BKSubSet)
Index Type CouponRate Settle Maturity Period Name
1 Bond 0.03 01-Jan-2004 01-Jan-2007 1 3% Bon
d
2 Bond 0.03 01-Jan-2004 01-Jan-2008 1 3% Bon
d

Index	Type Strike Settle	Maturity	CapReset...	Name ...	
3	Cap	0.04	$01-J a n-2004$	$01-$ Jan-2008	1

[Delta, Gamma] = bksens(BKTree, BKSubSet)
Delta =

```
\(-285.7151\)
-365.7048
189.5319

Gamma =
\(1.0 e+003\) *
0.8456
1.4345
6.9999

See Also bkprice, bktree, bkvolspec, instadd

\section*{bktimespec}

\author{
Purpose Specify time structure for Black-Karasinski tree \\ Syntax \(\quad\) TimeSpec \(=\) bktimespec(ValuationDate, Maturity, Compounding)
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline ValuationDate & Scalar date marking the pricing date and first observation in the tree. Specify as a serial date number or date string. \\
\hline Maturity & Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order. \\
\hline \multirow[t]{5}{*}{Compounding} & (Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default \(=-1\) (continuous compounding). This argument determines the formula for the discount factors: \\
\hline & Compounding \(=1,2,3,4,6,12\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and T is the time in periodic units; for example, \(\mathrm{T}=\) \(F\) is 1 year. \\
\hline & Compounding \(=365\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
\hline
\end{tabular}

Compounding \(=-1\)
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.

\author{
Description \\ Examples
}

TimeSpec = bktimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for an BK tree and determines the mapping between dates and time for rate quoting.
TimeSpec is a structure specifying the time layout for bktree. The state observation dates are [Settle; Maturity (1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

Specify a four-period tree with annual nodes. Use annual compounding to report rates.
```

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
Compounding = 1;
TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
FinObj: 'BKTimeSpec'
ValuationDate: 731947
Maturity: [4x1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

```

\section*{See Also}
bktree, bkvolspec, hwtree

\section*{bktree}

Purpose Construct Black-Karasinski interest-rate tree
```

Syntax BKTree = bktree(VolSpec, RateSpec, TimeSpec)

```

\section*{Arguments}

\section*{Description}

\section*{Examples}

VolSpec Volatility process specification. See bkvolspec for information on the volatility process.

RateSpec Interest-rate specification for the initial rate curve. See intenvset for information on declaring an interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation dates of the BK tree and the Compounding rule for date to time mapping and price-yield formulas. See bktimespec for information on the tree structure.

BKTree = bktree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

Using the data provided, create a BK volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a BK tree using bktree.
```

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];

```
```

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', ValuationDate,...
'EndDates', VolDates,...
'Rates', Rates);
BKTimeSpec = bktimespec(ValuationDate, VolDates, Compounding);
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)
BKTree =
FinObj: 'BKFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [[0 0.9973 1.9973 2.9973]
dObs: [731947 732312 732677 733042]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [3.9973]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}

```

Use treeviewer to observe the tree you have created.
```

treeviewer(BKTree)

```

\section*{bktree}


\section*{See Also}
bkprice, bktimespec, bkvolspec, intenvset

\section*{Purpose}

Specify Black-Karasinski interest-rate volatility process
Syntax

Arguments
\begin{tabular}{ll} 
ValuationDate & \begin{tabular}{l} 
Scalar value representing the observation date \\
of the investment horizon.
\end{tabular} \\
VolDates & \begin{tabular}{l} 
Number of points (NPOINTS)-by-1 vector of yield \\
volatility end dates.
\end{tabular} \\
VolCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of yield volatility values in \\
decimal form.
\end{tabular} \\
AlphaDates & \begin{tabular}{l} 
NPOINTS-by-1 vector of mean reversion end \\
dates.
\end{tabular} \\
AlphaCurve & \begin{tabular}{l} 
NPOINTS-by-1 vector of positive mean reversion \\
values in decimal form.
\end{tabular} \\
InterpMethod & \begin{tabular}{l} 
(Optional) Interpolation method. Default is
\end{tabular} \\
'linear \({ }^{\prime}\). See interp1 for more information.
\end{tabular}

\section*{bkvolspec}
```

AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)
BKVolSpec =
FinObj: 'BKVolSpec'
ValuationDate: 731947
VolDates: [4\times1 double]
VolCurve: [4\times1 double]
AlphaCurve: 0.1000
AlphaDates: 733408
VolInterpMethod: 'linear'

```
See Also bktree, interp1

\section*{Purpose}

Price bond from BDT interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
}

\section*{Arguments}
\begin{tabular}{ll} 
BDTTree & \begin{tabular}{l} 
Interest-rate tree structure created by \\
bdttree.
\end{tabular} \\
CouponRate & \begin{tabular}{l} 
Decimal annual rate. \\
Settle
\end{tabular} \\
& \begin{tabular}{l} 
Settlement date. A vector of serial date \\
numbers or date strings. Settle must be \\
earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date \\
numbers or date strings.
\end{tabular} \\
Period & \begin{tabular}{l} 
(Optional) Coupons per year of the bond. A \\
vector of integers. Allowed values are 1, 2, 3, \\
\\
4, 6, and 12. Default = 2. \\
(Optional) Day-count basis of the instrument. \\
Aasis
\end{tabular} \\
& A vector of integers.
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)

\section*{bondbybdt}
\begin{tabular}{|c|c|}
\hline & - \(8=\) actual/actual (ISMA) \\
\hline & - 9 = actual/360 (ISMA) \\
\hline & - \(10=\) actual/365 (ISMA) \\
\hline & - \(11=30 / 360 \mathrm{E}\) (ISMA) \\
\hline & - \(12=\mathrm{actual} / 365\) (ISDA) \\
\hline & - \(13=\mathrm{BUS} / 252\) \\
\hline & - \(13=\mathrm{BUS} / 252\) \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline FirstCouponDate & (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. \\
\hline LastCouponDate & (Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and is followed only by the bond's maturity cash flow date. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
(Optional) Date when a bond actually starts \\
(the date from which a bond cash flow \\
is considered). To make an instrument \\
forward-starting, specify this date as a future \\
date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
Face & \begin{tabular}{l} 
(Optional) Face value. Default = 100.
\end{tabular} \\
Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options \\
structure created with derivset.
\end{tabular}
\end{tabular}

\section*{Description}
[Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle,Maturity, Period, Basis, EndMonthRule, IssueDate,FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a BDT interest-rate tree.
Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0 .

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

Examples Price a \(10 \%\) bond using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. BDTTree contains the time and interest-rate information needed to price the bond.
```

load deriv.mat;

```

\section*{bondbybdt}

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Period = 1;

```

Use bondbybdt to compute the price of the bond.
```

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)
Price =
95.5030

```

See Also
bdttree, bdtprice, instbond

\section*{Purpose}

Price bond from Black-Karasinski interest-rate tree

\author{
Syntax [Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
}

\section*{Arguments}
\begin{tabular}{ll} 
BKTree & \begin{tabular}{l} 
Forward rate tree structure created by \\
bktree.
\end{tabular} \\
CouponRate & Decimal annual rate. \\
Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date \\
numbers or date strings. Settle must be \\
earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date numbers \\
or date strings. \\
(Optional) Coupons per year of the bond. A
\end{tabular} \\
Period & \begin{tabular}{l} 
vector of integers. Allowed values are 1, 2, 3, \\
\\
4, 6, and 12. Default \(=2\).
\end{tabular} \\
(Optional) Day-count basis of the instrument. \\
Basis & A vector of integers. \\
& - \(0=\) actual/actual (default) \\
& - \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& - \(3=\) actual/365 \\
& - \(4=30 / 360\) (PSA) \\
& - \(5=30 / 360\) (ISDA) \\
& - \(6=30 / 360\) (European) \\
& - \(7=\) actual/365 (Japanese)
\end{tabular}

\section*{bondbybk}

\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
(Optional) Date when a bond actually starts \\
(the date from which a bond cash flow \\
is considered). To make an instrument \\
forward-starting, specify this date as a future \\
date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
Face & \begin{tabular}{l} 
(Optional) Face value. Default = 100.
\end{tabular} \\
Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options \\
structure created with derivset.
\end{tabular}
\end{tabular}

\section*{Description}
[Price, PriceTree] = bondbybk(BKTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a Black-Karasinski interest-rate tree.
Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

Examples Price a \(4 \%\) bond using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the bond.

\section*{bondbybk}
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2004';

```
Maturity = '31-Dec-2008';

Use bondbybk to compute the price of the bond.
```

Price = bondbybk(BKTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
98.0300

```

See Also bkprice, bktree, hwprice, hwtree, instbond

\section*{Purpose}

Price bond from HJM interest-rate tree
```

Syntax
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)

```

\section*{Arguments}
\begin{tabular}{ll} 
HJMTree & \begin{tabular}{l} 
Forward rate tree structure created by \\
hjmtree.
\end{tabular} \\
CouponRate & \begin{tabular}{l} 
Decimal annual rate.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date \\
numbers or date strings. Settle must be \\
earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date \\
numbers or date strings.
\end{tabular} \\
Period & \begin{tabular}{l} 
(Optional) Coupons per year of the bond. A \\
vector of integers. Allowed values are 1, 2, 3,
\end{tabular} \\
& \begin{tabular}{l}
4,6, and 12. Default \(=2\). \\
(Optional) Day-count basis of the instrument.
\end{tabular} \\
Basis & A vector of integers.
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)

\section*{bondbyhim}
\begin{tabular}{ll} 
& - \(8=\) actual/actual (ISMA) \\
- \(9=\) actual/360 (ISMA) \\
- \(10=\) actual/365 (ISMA) \\
- \(11=30 / 360 \mathrm{E}\) (ISMA) \\
EndMonthRule & - \(12=\) actual/365 (ISDA) \\
& (Optional) End-of-month rule. A vector. \\
This rule applies only when Maturity is an \\
end-of-month date for a month having 30 or \\
fewer days. 0 = ignore rule, meaning that a \\
bond's coupon payment date is always the \\
same numerical day of the month. \(1=\) set rule \\
on (default), meaning that a bond's coupon \\
payment date is always the last actual day \\
of the month.
\end{tabular}
\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
(Optional) Date when a bond actually starts \\
(the date from which a bond cash flow \\
is considered). To make an instrument \\
forward-starting, specify this date as a future \\
date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
Face & \begin{tabular}{l} 
(Optional) Face value. Default = 100.
\end{tabular} \\
Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options \\
structure created with derivset.
\end{tabular}
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle,Maturity, Period, Basis, EndMonthRule, IssueDate,FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from an HJM forward-rate tree.
Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PBush contains the clean prices.
- PriceTree.AIBush contains the accrued interest.
- PriceTree.tObs contains the observation times.

Examples Price a \(4 \%\) bond using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the bond.

\section*{bondbyhim}
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use bondbyhjm to compute the price of the bond.
```

Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
97.5280

```

See Also hjmtree, hjmprice, instbond

\section*{Purpose}

Price bond from Hull-White interest-rate tree

\author{
Syntax [Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
}

\section*{Arguments}
\begin{tabular}{ll} 
HWTree & \begin{tabular}{l} 
Forward-rate tree structure created by \\
hwtree.
\end{tabular} \\
CouponRate & \begin{tabular}{l} 
Decimal annual rate. \\
Settle
\end{tabular} \\
& \begin{tabular}{l} 
Settlement date. A vector of serial date \\
numbers or date strings. Settle must be \\
earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date \\
numbers or date strings.
\end{tabular} \\
Period & \begin{tabular}{l} 
(Optional) Coupons per year of the bond. A \\
vector of integers. Allowed values are 1, 2, 3,
\end{tabular} \\
& \begin{tabular}{l}
4,6, and 12. Default = 2. \\
(Optional) Day-count basis of the instrument. \\
Basis
\end{tabular} \\
& A vector of integers.
\end{tabular}
- 0 = actual/actual (default)
- \(1=30 / 360\) (SIA)
- \(2=\) actual \(/ 360\)
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)

\section*{bondbyhw}
\(\left.\begin{array}{ll}\text { - } 8=\text { actual/actual (ISMA) } \\ \text { - } 9=\text { actual/ } 360 \text { (ISMA) }\end{array}\right]\) - \(10=\) actual/365 (ISMA)
\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
(Optional) Date when a bond actually starts \\
(the date from which a bond cash flow \\
is considered). To make an instrument \\
forward-starting, specify this date as a future \\
date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
Face & \begin{tabular}{l} 
(Optional) Face value. Default \(=100\).
\end{tabular} \\
Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options \\
structure created with derivset.
\end{tabular}
\end{tabular}

\section*{Description}
[Price, PriceTree] = bondbyhw(HWTree, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond from a Hull-White interest-rate tree.
Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

Examples Price a \(4 \%\) bond using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the bond.

\section*{bondbyhw}
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

```

Use bondbyhw to compute the price of the bond.
```

Price = bondbyhw(HWTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
98.0483

```

See Also bkprice, bktree, hwprice, hwtree, instbond

\section*{Purpose}

Price bond from set of zero curves

\author{
Syntax \\ Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
}

\section*{Arguments}
\begin{tabular}{ll} 
RateSpec & \begin{tabular}{l} 
Structure containing the properties of an \\
interest-rate structure. See intenvset for \\
information on creating RateSpec.
\end{tabular} \\
CouponRate & \begin{tabular}{l} 
Decimal annual rate.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date \\
numbers or date strings. Settle must be \\
earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date. A vector of serial date \\
numbers or date strings. \\
(Optional) Coupons per year of the bond. A
\end{tabular} \\
Period & \begin{tabular}{l} 
vector of integers. Allowed values are 1, 2, 3,
\end{tabular} \\
4, 6, and 12. Default = 2. \\
Basis & (Optional) Day-count basis of the instrument. \\
& A vector of integers. \\
& - \(0=\) actual/actual (default) \\
& - \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& - \(3=\) actual/365 \\
& - \(4=30 / 360\) (PSA) \\
& - \(5=30 / 360\) (ISDA) \\
& - \(6=30 / 360\) (European) \\
& - \(7=\) actual/365 (Japanese)
\end{tabular}

\section*{bondbyzero}
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252
\begin{tabular}{ll} 
EndMonthRule & \begin{tabular}{l} 
(Optional) End-of-month rule. A vector. \\
This rule applies only when Maturity is an \\
end-of-month date for a month having 30 or \\
fewer days. 0 = ignore rule, meaning that a \\
bond's coupon payment date is always the \\
same numerical day of the month. 1 = set rule \\
on (default), meaning that a bond's coupon \\
payment date is always the last actual day \\
of the month. \\
(Optional) Date when a bond was issued.
\end{tabular} \\
IssueDate & \begin{tabular}{l} 
(Optional) Date when a bond makes its first \\
coupon payment. When FirstCouponDate
\end{tabular} \\
FirstCouponDate \\
and LastCouponDate are both specified, \\
FirstCouponDate takes precedence in \\
determining the coupon payment structure.
\end{tabular}
\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
(Optional) Date when a bond actually starts \\
(the date from which a bond cash flow \\
is considered). To make an instrument \\
forward-starting, specify this date as a future \\
date. If you do not specify StartDate, the \\
effective start date is the Settle date.
\end{tabular} \\
Face & (Optional) Face value. Default \(=100\).
\end{tabular}

All inputs are either scalars or number of instruments (NINST)-by-1 vectors unless otherwise specified. Dates can be serial date numbers or date strings. Optional arguments can be passed as empty matrix [].

\section*{Description}

Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) returns a NINST-by-NUMCURVES matrix of clean bond prices. Each column arises from one of the zero curves.

\section*{Examples Price a \(4 \%\) bond using a set of zero curves.}

Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the bond.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use bondbyzero to compute the price of the bond.
```

Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)
Price =

```

\section*{bondbyzero}
97.5334

\author{
See Also \\ cfbyzero, fixedbyzero, floatbyzero, swapbyzero
}
\begin{tabular}{ll} 
Purpose & Extract entries from node of bushy tree \\
Syntax & Values \(=\) bushpath (Tree, BranchList) \\
Arguments &
\end{tabular}

\section*{Description}

Values = bushpath(Tree, BranchList) extracts entries of a node of a bushy tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number 1 , the second-to-top is 2 , and so on. Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a bushy tree.

\section*{Examples Create an HJM tree by loading the example file.}
```

load deriv.mat;

```

Then
```

FwdRates = bushpath(HJMTree.FwdTree, [1 2 1])

```
returns the rates at the tree nodes located by taking the up branch, then the down branch, and finally the up branch again.
```

FwdRates =

```
\[
1.0356
\]
1.0364
1.0526

\section*{bushpath}

\subsection*{1.0463}

You can visualize this with the treeviewer function.
treeviewer (HJMTree)


\section*{See Also}
bushshape, mkbush

\section*{Purpose Retrieve shape of bushy tree}

\author{
Syntax [NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree)
}

\section*{Arguments}

\section*{Description}

Examples Create an HJM tree by loading the example file.
```

load deriv.mat;

```

With treeviewer you can see the general shape of the HJM interest-rate tree.

\section*{bushshape}


With this tree
[NumLevels, NumChild, NumPos, NumStates, Trim] =... bushshape(HJMTree.FwdTree)
returns
NumLevels =
4
NumChild =
\(\begin{array}{llll}2 & 2 & 0\end{array}\)

NumPos =
\(\begin{array}{llll}4 & 3 & 2 & 1\end{array}\)
NumStates =
\(\begin{array}{llll}1 & 2 & 4 & 8\end{array}\)

You can recreate this tree using the mkbush function.
```

Tree = mkbush(NumLevels, NumChild(1), NumPos(1), Trim);
Tree = mkbush(NumLevels, NumChild, NumPos);

```

See Also bushpath, mkbush

Purpose Price cap instrument from BDT interest-rate tree
```

Syntax
[Price, PriceTree] = capbybdt(BDTTree, Strike, Settle,
Maturity, Reset, Basis, Principal, Options)

```

\section*{Arguments}
\begin{tabular}{ll} 
BDTTree & Interest-rate tree structure created by bdttree. \\
Strike & \begin{tabular}{l} 
Number of instruments (NINST)-by-1 vector of rates \\
at which the cap is exercised.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement dates. NINST-by-1 vector of dates \\
representing the settlement dates of the cap.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity \\
dates of the cap.
\end{tabular} \\
Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
frequency of payments per year. Default = 1.
\end{tabular} \\
Basis & \begin{tabular}{l} 
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular} \\
& - \(0=\) actual/actual (default) \\
& - \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& - \(3=\) actual/365 \\
& - \(4=30 / 360\) (PSA) \\
& - \(5=30 / 360\) (ISDA) \\
& - \(6=30 / 360\) (European) \\
& - \(7=\) actual/365 (Japanese) \\
& - \(8=\) actual/actual (ISMA) \\
& - \(9=\) actual/360 (ISMA)
\end{tabular}
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- \(12=\mathrm{actual} / 365\) (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

\section*{Examples}
[Price, PriceTree] = capbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a BDT interest-rate tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the BDT tree. The cap argument Settle is ignored.

Example 1. Price a \(3 \%\) cap instrument using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use capbybdt to compute the price of the cap instrument.
```

Price = capbybdt(BDTTree, Strike, Settle, Maturity)
Price =

```
    28.5191

Example 2. This example shows the pricing of a \(10 \%\) cap instrument using a newly created BDT tree.

First set the required arguments for the three needed specifications.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

```

Next create the specifications.
```

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

```

Now create the BDT tree from the specifications.
```

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

```

Set the cap arguments. Remaining arguments will use defaults.
CapStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
```

CapReset = 1;

```

Use capbybdt to find the price of the cap instrument.
```

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,...
CapReset)
Price =
1.6923

```

\section*{See Also}
bdttree, cfbybdt, floorbybdt, swapbybdt

Purpose Price cap instrument from Black-Karasinski interest-rate tree
```

Syntax
[Price, PriceTree] = capbybk(BKTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BKTree & Interest-rate tree structure created by bktree. \\
\hline Strike & Number of instruments (NINST)-by-1 vector of rates at which the cap is exercised. \\
\hline Settle & Settlement dates. NINST-by- 1 vector of dates representing the settlement dates of the cap. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the cap. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline \multirow[t]{11}{*}{Basis} & (Optional) Day-count basis of the instrument. A \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - 2 = actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\) actual/actual (ISMA) \\
\hline & - \(9=\) actual/360 (ISMA) \\
\hline
\end{tabular}
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

\section*{Examples}
[Price, PriceTree] = capbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a Black-Karasinski interest-rate tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the BK tree. The cap argument Settle is ignored.

Price a 3\% cap instrument using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

```

Use capbybk to compute the price of the cap instrument.
```

Price = capbybk(BKTree, Strike, Settle, Maturity)
Price =
6.8337

```

See Also cfbybk, floorbybk, bktree, swapbybk

\section*{Purpose}

Price caps using the Black option pricing model
```

Syntax
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Volatility)
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...)

```

\section*{Arguments}
\(\left.\begin{array}{ll}\text { RateSpec } & \begin{array}{l}\text { The annualized, continuously compounded rate term } \\ \text { structure. For more information, see intenvset. }\end{array} \\ \text { Strike } & \begin{array}{l}\text { NINST-by-1 vector of rates at which the cap is } \\ \text { exercised, as a decimal number. }\end{array} \\ \text { Settle } & \begin{array}{l}\text { Scalar representing the settle date of the cap. }\end{array} \\ \text { Maturity } & \begin{array}{l}\text { Scalar representing the maturity date of the cap. }\end{array} \\ \text { Volatility } & \text { NINST-by-1 vector of volatilities. } \\ \text { Reset } & \begin{array}{l}\text { (Optional) NINST-by-1 vector representing the } \\ \text { frequency of payments per year. Default is } 1 . \\ \text { (Optional) NINST-by-1 vector representing the }\end{array} \\ \text { Principal } & \begin{array}{l}\text { notional principal amount. Default is } 100 .\end{array} \\ \text { Basis } & \text { NINST-by-1 vector representing the basis used when } \\ & \text { annualizing the input forward rate. }\end{array}\right\}\)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)

ValuationDate (Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date.

Note All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

\section*{Description}
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Volatility)
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...)

Use capbyblk to price caps using the Black option pricing model.
The outputs are:
- CapPrice - NINST-by-1 expected prices of the cap.
- Caplets - NINST-by-NCF array of caplets, padded with NaNs.

\section*{Examples}

Consider an investor who gets into a contract that caps the interest rate on a \(\$ 100,000\) loan at \(8 \%\) quarterly compounded for 3 months, starting on January 1, 2009. Assuming that on January 1, 2008 the zero rate is \(6.9394 \%\) continuously compounded and the volatility is \(20 \%\), use this data to compute the cap price.
Calculate the RateSpec:
```

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

```

Compute the price of the cap:
```

Settle = 'Jan-01-2009'; % cap starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
CapRate = 0.08;
CapReset = 4;
Principal=100000;
CapPrice = capbyblk(RateSpec, CapRate, Settle, Maturity, Volatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)
CapPrice =
51.6125

```

See Also floorbyblk

Purpose Price cap instrument from HJM interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)
}

\section*{Arguments}

HJMTree Forward-rate tree structure created by hjmtree.
Strike \(\quad\) Number of instruments (NINST)-by-1 vector of rates at which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity dates of the cap.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- \(12=\) actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

\section*{Examples}
[Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from an HJM tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the HJM tree. The cap argument Settle is ignored.

Price a \(3 \%\) cap instrument using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the cap instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

Use capbyhjm to compute the price of the cap instrument.
```

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)
Price =
6.2831

```

See Also cfbyhjm, floorbyhjm, hjmtree, swapbyhjm

\section*{Purpose}

Price cap instrument from Hull-White interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)
}

\section*{Arguments}
\begin{tabular}{ll} 
HWTree & Interest-rate tree structure created by hwtree. \\
Strike & \begin{tabular}{l} 
Number of instruments (NINST)-by-1 vector of rates \\
at which the cap is exercised.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement dates. NINST-by-1 vector of dates \\
representing the settlement dates of the cap.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity \\
dates of the cap.
\end{tabular} \\
Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
frequency of payments per year. Default = 1. \\
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular}
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}
[Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options) computes the price of a cap instrument from a Hull-White interest-rate tree.

Price is the expected price of the cap at time 0 .
PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the HW tree. The cap argument Settle is ignored.

\section*{Examples}

Price a 3\% cap instrument using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the cap instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

```

Use capbyhw to compute the price of the cap instrument.
```

Price = capbyhw(HWTree, Strike, Settle, Maturity)
Price =
7.0707

```

See Also cfbyhw, floorbyhw, hwtree, swapbyhw

Purpose

Syntax

Arguments

\section*{Description}

\section*{Examples}

Calculate price of cash-or-nothing digital options using Black-Scholes model
```

Price = cashbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, Payoff)

```

RateSpec The annualized, continuously compounded rate term structure. For information on the interest rate specification, see intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
Payoff NINST-by-1 vector of payoff values or the amount to be paid at expiration.

Price = cashbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff) computes cash-or-nothing option prices using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.
Consider a European call and put cash-or-nothing options on a futures contract with and exercise strike price of \(\$ 90\), a fixed payoff of \(\$ 10\) that expires on October 1, 2008. Assume that on January 1, 2008, the contract trades at \(\$ 110\), and has a volatility of \(25 \%\) per annum and the risk-free rate is \(4.5 \%\) per annum. Using this data, calculate the price of the call and put cash-or-nothing options on the futures contract.

Create the RateSpec:
```

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

```

Define the StockSpec:
```

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount);

```

Define the call and put options:
```

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

```

Calculate the price:
```

Pcon = cashbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, Payoff)
Pcon =
7.6716
1.9965

```

Purpose

Syntax
PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff) PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff, OutSpec)

\section*{Arguments}
\begin{tabular}{ll} 
RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l} 
Stock specification. See stockspec.
\end{tabular} \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
Strike & \begin{tabular}{l} 
NINST-by-1 vector of strike price values.
\end{tabular} \\
Payoff & \begin{tabular}{l} 
NINST-by-1 vector of payoff values or the amount \\
to be paid at expiration.
\end{tabular} \\
OutSpec & \begin{tabular}{l} 
(Optional) All optional inputs are specified as \\
matching parameter name/value pairs. The
\end{tabular} \\
& \begin{tabular}{l} 
parameter name is specified as a character string, \\
followed by the corresponding parameter value.
\end{tabular} \\
& \begin{tabular}{l} 
You can specify parameter name/value pairs \\
in any order. Names are case-insensitive and \\
partial string matches are allowed provided no \\
ambiguities exist. Valid parameter names are:
\end{tabular}
\end{tabular}
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are 'Price',
```

'Delta','Gamma', 'Vega', 'Lambda', 'Rho',
'Theta', or 'All'.
For example,OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be Price, Lambda, and Rho, in that order.

```

To invoke from a function: [Price, Lambda, Rho] = cashsensbybls(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})

OutSpec \(=\) \{'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.
- Default is OutSpec = \{'Price' \(\}\).

\section*{Description}

\section*{Examples}

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff) computes cash-or-nothing option prices using the Black-Scholes option pricing model.

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, Payoff, OutSpec) includes an OutSpec argument defined as parameter/value pairs, and computes cash-or-nothing option prices and sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and sensitivities.

Consider a European call and put cash-or-nothing options on a futures contract with an exercise price of \(\$ 90\), and a fixed payoff of \(\$ 10\) that expires on January 1, 2009. Assume that on October 1, 2008 the contract trades at \(\$ 110\), and has a volatility of \(25 \%\) per annum and the risk-free rate is \(4.5 \%\) per annum. Using this data, calculate the
price and sensitivity of the call and put cash-or-nothing options on the futures contract.

Create the RateSpec:
```

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

```

Define the StockSpec:
```

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount);

```

Define the call and put options:
```

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

```

Compute the gamma, theta, and price:
OutSpec = \{ 'gamma';'theta';'price'\};
[Gamma, Theta, Price] = cashsensbybls(RateSpec, StockSpec,...
Settle, Maturity, OptSpec, Strike, Payoff, 'OutSpec', OutSpec)
Gamma =
-0.0050
0.0050
Theta \(=\)
-2.2489
1.8139
Price =
7.6716
1.9965

See Also
cashbybls

\section*{cfbybdt}

Purpose Price cash flows from BDT interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)
}

\section*{Arguments}
\begin{tabular}{ll} 
BDTTree & Forward-rate tree structure created by bdttree. \\
CFlowAmounts & \begin{tabular}{l} 
Number of instruments (NINST) by maximum \\
number of cash flows (MOSTCFS) matrix of cash \\
flow amounts. Each row is a list of cash flow \\
values for one instrument. If an instrument has \\
fewer than MOSTCFS cash flows, the end of the row \\
is padded with NaNs.
\end{tabular} \\
CFlowDates & \begin{tabular}{l} 
NINST-by-MOSTCFS matrix of cash flow dates. \\
Each entry contains the serial date number of the \\
corresponding cash flow in CFlowAmounts.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date numbers \\
or date strings. The Settle date for every cash \\
flow is set to the ValuationDate of the BDT tree.
\end{tabular} \\
& \begin{tabular}{l} 
The cash flow argument, Settle, is ignored. \\
(Optional) Day-count basis of the instrument. A
\end{tabular} \\
Basis & vector of integers. \\
& - \(0=\) actual/actual (default)
\end{tabular}
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252
(Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

\section*{Examples}
[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a BDT interest-rate tree.

Price is an NINST-by- 1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the instruments.
load deriv.mat;
The valuation date (settle date) specified in BDTTree is January 1, 2000 (date number 730486).

BDTTree.RateSpec.ValuationDate

\section*{cfbybdt}
```

ans =

```

730486

Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947;
730852, 731217, 731582, 731947];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, ...

``` CFlowDates, BDTTree.RateSpec.ValuationDate)
```

Price =

```
    74.0112
    74.3671
PriceTree =
    FinObj: 'BDTPriceTree'
        tObs: [0 1.00 2.003 .004 .00 ]
    PTree: \{1x5 cell\}

You can visualize the prices of the two cash flow instruments with the treeviewer function.
```

treeviewer(PriceTree)

```


\section*{See Also}
bdttree, bdtprice, cfamounts, instcf

Purpose
Price cash flows from Black-Karasinski interest-rate tree
```

Synfax [Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)

```

\section*{Arguments}

BKTree Forward-rate tree structure created by bktree.
CFlowAmounts Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.

CFlowDates
NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date number of the corresponding cash flow in CFlowAmounts.
Settle Settlement date. A vector of serial date numbers or date strings. The Settle date for every cash flow is set to the ValuationDate of the BK tree. The cash flow argument, Settle, is ignored.
(Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Options
(Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

Examples
[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a Black-Karasinski interest-rate tree.

Price is an NINST-by- 1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the instruments.
```

load deriv.mat;

```

The valuation date (settle date) specified in BKTree is January 1, 2004 (date number 731947).
```

BKTree.RateSpec.ValuationDate

```
```

ans =

```

731947

Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408,733774;
732678, 733034, 733408, 734774];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,...
BKTree.RateSpec.ValuationDate)
Price =
93.3600
81.6218
PriceTree =
FinObj: 'BKPriceTree'
tObs: [[0 1 1 2 3 4]
PTree: {[2x1 double] [2x3 double] [2x5 double] [2x5
double] [2x5 double]}
Connect: {[2] [2 3 4] [2 2 3 3 4 4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
```

treeviewer(PriceTree)

```


See Also
bktree, bkprice, cfamounts, instcf

Purpose Price cash flows from HJM interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, Settle, Basis, Options)
}

\section*{Arguments}
\begin{tabular}{ll} 
HJMTree & \begin{tabular}{l} 
Forward-rate tree structure created by hjmtree. \\
Number of instruments (NINST) by maximum \\
number of cash flows (MOSTCFS) matrix of cash \\
flow amounts. Each row is a list of cash flow \\
values for one instrument. If an instrument has \\
fewer than MOSTCFS cash flows, the end of the row \\
is padded with NaNs.
\end{tabular} \\
CFlowDates & \begin{tabular}{l} 
NINST-by-MOSTCFS matrix of cash flow dates. \\
Each entry contains the serial date number of the \\
corresponding cash flow in CFlowAmounts.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date numbers \\
or date strings. The Settle date for every cash \\
flow is set to the ValuationDate of the HJM tree.
\end{tabular} \\
& \begin{tabular}{l} 
The cash flow argument, Settle, is ignored. \\
(Optional) Day-count basis of the instrument. A
\end{tabular} \\
Basis & vector of integers. \\
& - \(0=\) actual/actual (default)
\end{tabular}
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- 11 = 30/360E (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Options
(Optional) Derivatives pricing options structure created with derivset.

\section*{Description}
[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from an HJM interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Examples Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the instruments.
load deriv.mat;
The valuation date (settle date) specified in HJMTree is January 1, 2000 (date number 730486).

HWTree.RateSpec.ValuationDate

\section*{cfbyhim}
```

ans =
730486

```

Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947;
730852, 731217, 731582, 731947];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,...

``` CFlowDates, HJMTree.RateSpec.ValuationDate)
```

Price =

```
96.7805
97.2188

PriceTree =
FinObj: 'HJMPriceTree'
tObs: [0 1.00 2.003 .004 .00\(]\)
PBush: \{1x5 cell\}

You can visualize the prices of the two cash flow instruments with the treeviewer function.
```

treeviewer(PriceTree)

```

cfamounts, hjmprice, hjmtree, instcf

Purpose
Price cash flows from Hull-White interest-rate tree
```

Syntax
[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)

```

\section*{Arguments}
\begin{tabular}{ll} 
HWTree & Forward-rate tree structure created by hwtree. \\
CFlowAmounts & \begin{tabular}{l} 
Number of instruments (NINST) by maximum \\
number of cash flows (MOSTCFS) matrix of cash \\
flow amounts. Each row is a list of cash flow \\
values for one instrument. If an instrument has \\
fewer than MOSTCFS cash flows, the end of the row \\
is padded with NaNs.
\end{tabular} \\
CFlowDates & \begin{tabular}{l} 
NINST-by-MOSTCFS matrix of cash flow dates. \\
Each entry contains the serial date number of the \\
corresponding cash flow in CFlowAmounts.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. A vector of serial date numbers \\
or date strings. The Settle date for every cash \\
flow is set to the ValuationDate of the HW tree.
\end{tabular} \\
Basis & \begin{tabular}{l} 
The cash flow argument, Settle, is ignored. \\
(Optional) Day-count basis of the instrument. A \\
\\
\\
vector of integers.
\end{tabular} \\
& - \(0=\) actual/actual (default)
\end{tabular}
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Options
(Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

Examples
[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates, Settle, Basis, Options) prices cash flows from a Hull-White interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the instruments.
```

load deriv.mat;

```

The valuation date (settle date) specified in HWTree is January 1, 2004 (date number 731947).

HWTree.RateSpec.ValuationDate

731947

Provide values for the other required arguments.
```

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408, 733774;
732678, 733034, 733408, 734774];

```

Use this information to compute the prices of the two cash flow instruments.
```

[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,...
HWTree.RateSpec.ValuationDate)
Price =
93.3789
81.7651
PriceTree =
FinObj: 'HWPriceTree'
tObs: [[0 1 1 2 3 4 4]
PTree: {[2x1 double] [2x3 double] [2x5 double] [2x5
double] [2x5 double]}
Connect: {[2] [2 2 3 4] [2 2 2 3 4 4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}

```

You can visualize the prices of the two cash flow instruments with the treeviewer function.
```

treeviewer(PriceTree)

```


See Also
cfamounts, hwtree, hwprice, instcf

Purpose Price cash flows from set of zero curves
```

Syntax Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle,
Basis)

```

\section*{Arguments}

RateSpec Structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

CFlowAmounts Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix with entries listing cash flow amounts corresponding to each date in CFlowDates. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the serial date of the corresponding cash flow in CFlowAmounts.

Settle Settlement date on which the cash flows are priced.

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual \(/ 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

\section*{Description}

Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis) computes Price, an NINST-by-NUMCURVES matrix of cash flows prices. Each column arises from one of the zero curves.

\section*{Examples}

Price a portfolio containing two cash flow instruments paying interest annually over the four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides ZeroRateSpec. The ZeroRateSpec structure contains the interest-rate information needed to price the instruments.
```

load deriv.mat
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947;
730852, 731217, 731582, 731947];
Settle = 730486;
Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)
Price =

```
    96.7804
    97.2187

See Also bondbyzero, fixedbyzero, floatbyzero, swapbyzero

\section*{Purpose}

Price European simple chooser options using Black-Scholes model

\section*{Syntax}

Price \(=\) chooserbybls(RateSpec, StockSpec, Settle, Maturity, Strike)

\section*{Arguments}

\section*{Description}

Price = chooserbybls(RateSpec, StockSpec, Settle, Maturity, Strike) computes the price for European simple chooser options using the Black-Scholes model.

Price is a NINST-by-1 vector of expected prices.

Note Only dividends of type continuous can be considered for choosers.

\section*{Examples Consider a European chooser option with an exercise price of \(\$ 60\) on} June 1, 2007. The option expires on December 2, 2007. Assume the underlying stock provides a continuous dividend yield of \(5 \%\) per annum, is trading at \(\$ 50\), and has a volatility of \(20 \%\) per annum. The annualized continuously compounded risk-free rate is \(10 \%\) per annum. Assume that the choice must be made on August 31, 2007. Using this data:
```

AssetPrice = 50;
Strike = 60;
Settlement = 'Jun-1-2007';
Maturity = 'Dec-2-2007';
ChooseDate = 'Aug-31-2007';
RiskFreeRate = 0.1;
Sigma = 0.20;
Yield = 0.05

```

Define the RateSpec and StockSpec:
```

RateSpec = intenvset('Compounding', -1, 'Rates', RiskFreeRate, 'StartDates',...
Settlement, 'EndDates', Maturity);
StockSpec = stockspec(Sigma, AssetPrice,'continuous',Yield);

```

Price the chooser option:
```

Price = chooserbybls(RateSpec, StockSpec, Settlement, Maturity,...
Strike, ChooseDate)
Price =
8.9308

```

References Rubinstein, Mark, "Options for the Undecided," Risk 4, 1991.
See Also blsprice, intenvset

Purpose
Create financial structure or return financial structure class name
```

Syntax
Obj = classfin(ClassName)
Obj = classfin(Struct, ClassName)
ClassName = classfin(Obj)

```

\section*{Arguments}

\section*{Description}

Examples

ClassName String containing the name of a financial structure class.

Struct MATLAB structure to be converted into a financial structure.

Obj Name of a financial structure.

Obj = classfin(ClassName) and Obj = classfin(Struct, ClassName) create a financial structure of class ClassName.

ClassName = classfin(Obj) returns a string containing a financial structure's class name.

Example 1. Create an HJMTimeSpec financial structure and complete its fields. (Typically, the function hjmtimespec is used to create HJMTimeSpec structures).
```

TimeSpec = classfin('HJMTimeSpec');
TimeSpec.ValuationDate = datenum('Dec-10-1999');
TimeSpec.Maturity = datenum('Dec-10-2002');
TimeSpec.Compounding = 2;
TimeSpec.Basis = 0;
TimeSpec.EndMonthRule = 1;
TimeSpec =
FinObj: 'HJMTimeSpec'
ValuationDate: 730464
Maturity: 731560

```

> Compounding: 2
> Basis: 0
> EndMonthRule: 1

Example 2. Convert an existing MATLAB structure into a financial structure.
```

TSpec.ValuationDate = datenum('Dec-10-1999');
TSpec.Maturity = datenum('Dec-10-2002');
TSpec.Compounding = 2;
TSpec.Basis = 0;
TSpec.EndMonthRule = 0;
TimeSpec = classfin(TSpec, 'HJMTimeSpec')
TimeSpec =
ValuationDate: 730464
Maturity: 731560
Compounding: 2
Basis: 0
EndMonthRule: 0
FinObj: 'HJMTimeSpec'

```

Example 3. Obtain a financial structure's class name.
load deriv.mat
ClassName = classfin(HJMTree)
ClassName =
HJMFwdTree

\section*{See Also}
isafin

\section*{Purpose}

Price compound option from CRR binomial tree

\author{
Syntax \\ [Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)
}

\section*{Arguments}
\(\left.\begin{array}{ll}\text { CSettle } & \begin{array}{l}\text { 1-by-1 vector containing the settlement or trade } \\ \text { date. }\end{array} \\ \text { CExerciseDates } & \text { For a European option (CAmericanOpt = 0): } \\ \text { NINST-by-1 vector of exercise dates. Each row } \\ \text { is the schedule for one option. For a European } \\ \text { option, there is only one exercise date, the } \\ \text { option expiry date. }\end{array}\right\}\)

Description [Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the value of a compound option.

Price is a NINST-by- 1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.
```

Examples Price a compound option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.
load deriv.mat

```

Set the required values. Other arguments will use defaults.
```

UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';
Price = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
CExerciseDates)
Price =
2.8482

```

References Rubinstein, Mark, "Double Trouble," Risk 5, 1991, p. 73.
```

See Also
crrtree, instcompound

```

Purpose Price compound option from EQP binomial tree
```

Syntax [Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline EQPTree & Stock tree structure created by eqptree. \\
\hline UOptSpec & String = 'Call' or 'Put'. \\
\hline UStrike & 1-by-1 vector of strike price values. \\
\hline USettle & 1-by-1 vector of Settle dates. \\
\hline \multirow[t]{4}{*}{UExerciseDates} & For a European option (UAmericanOpt \(=0\) ): \\
\hline & 1-by-1 vector of exercise dates. For a European option, there is only one exercise date, the option expiry date. \\
\hline & For an American option (UAmericanOpt = 1): \\
\hline & 1-by-2 vector of exercise date boundaries. The option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates is 1 -by- 1 , the option can be exercised between the valuation date of the stock tree and the single listed exercise date. \\
\hline UAmericanOpt & If UAmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If UAmericanOpt \(=1\), the option is an American option. \\
\hline COptSpec & NINST-by-1 list of string values 'Call' or 'Put' of the compound option. \\
\hline CStrike & NINST-by- 1 vector of strike price values. Each row is the schedule for one option. \\
\hline
\end{tabular}
\(\left.\begin{array}{ll}\text { CSettle } & \begin{array}{l}\text { 1-by-1 vector containing the settlement or trade } \\ \text { date. }\end{array} \\ \text { CExerciseDates } & \begin{array}{l}\text { For a European option (CAmericanOpt }=0 \text { ): } \\ \\ \text { NINST-by-1 vector of exercise dates. Each row } \\ \text { is the schedule for one option. For a European } \\ \text { option, there is only one exercise date, the } \\ \text { option expiry date. }\end{array} \\ & \text { For an American option (CAmericanOpt = 1): } \\ & \text { NINST-by-2 vector of exercise date boundaries. } \\ & \begin{array}{l}\text { For each instrument, the option can be } \\ \text { exercised on any tree date between or including }\end{array} \\ \text { the pair of dates on that row. If only one }\end{array}\right\}\)

\section*{Description}
[Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the value of a compound option.
Price is a NINST-by-1 vector of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.
Examples \begin{tabular}{l} 
Price a compound option using an EQP equity tree. \\
Load the file deriv.mat, which provides EQPTree. The EQPTree \\
structure contains the stock specification and time information needed \\
to price the option. \\
load deriv.mat
\end{tabular}

Set the required values. Other arguments will use defaults.
```

UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';
Price = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
CExerciseDates)
Price =

```
3.3931

References Rubinstein, Mark, "Double Trouble," Risk 5, 1991, p. 73

\author{
See Also eqptree, instcompound
}

\section*{Purpose}

Price compound options using implied trinomial tree (ITT)
```

Syntax
[Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt)

```

\section*{Arguments}
\begin{tabular}{ll} 
ITTTree & Stock tree structure created by itt \\
UOptSpec. \\
UStrike & String = 'call' or 'put'. \\
USettle & \begin{tabular}{l} 
1-by-1 vector of strike price values. \\
UExerciseDates
\end{tabular} \\
& \begin{tabular}{l} 
1-by-1 vector of Settle dates. \\
For a European option (UAmericanOpt = 0): \\
1-by-1 vector of exercise dates. For a European \\
option, there is only one exercise date, the option \\
expiry date.
\end{tabular} \\
& \begin{tabular}{l} 
For an American option (UAmericanOpt = 1): \\
1-by-2 vector of exercise date boundaries. The \\
option can be exercised on any tree date. If only \\
one non-NaN date is listed, or if ExerciseDates is \\
1-by-1, the option can be exercised between the \\
valuation date of the stock tree and the single \\
listed exercise date.
\end{tabular} \\
UAmericanOpt & \begin{tabular}{l} 
If UAmericanOpt = 0, NaN, or is unspecified, the \\
option is a European option. If UAmericanOpt =
\end{tabular} \\
1, the option is an American option.
\end{tabular}
\begin{tabular}{ll} 
CSettle & \begin{tabular}{l} 
1-by-1 vector containing the settlement or trade \\
date.
\end{tabular} \\
CExerciseDates & \begin{tabular}{l} 
For a European option (CAmericanOpt \(=0\) ):
\end{tabular} \\
& \begin{tabular}{l} 
NINST-by-1 vector of exercise dates. Each row \\
is the schedule for one option. For a European \\
option, there is only one exercise date, the option \\
expiry date.
\end{tabular} \\
& \begin{tabular}{l} 
For an American option (CAmerican0pt = 1):
\end{tabular} \\
& \begin{tabular}{l} 
NINST-by-2 vector of exercise date boundaries. \\
For each instrument, the option can be exercised \\
on any tree date between or including the pair \\
of dates on that row. If only one non-NaN date \\
is listed, or if ExerciseDates is NINST-by-1, the \\
option can be exercised between the valuation \\
date of the stock tree and the single listed \\
exercise date.
\end{tabular} \\
CAmericanOpt & \begin{tabular}{l} 
(Optional) If CAmericanOpt = 0, NaN, or is \\
unspecified, the option is a European option. If
\end{tabular} \\
CAmericanOpt = 1, the option is an American
\end{tabular}

\section*{Description}
[Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the value of a compound option by an ITT trinomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at each node.

Note The Settle date is set to the ValuationDate of the stock tree.
```

Examples Price a compound option using an ITT tree.
Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.
load deriv.mat
Set the required values. Other arguments will use defaults.

```
```

UOptSpec = 'Call';

```
UOptSpec = 'Call';
UStrike = 99;
UStrike = 99;
USettle = '01-Jan-2006';
USettle = '01-Jan-2006';
UExerciseDates = '01-Jan-2010';
UExerciseDates = '01-Jan-2010';
UAmericanOpt = 1;
UAmericanOpt = 1;
COptSpec = 'Put';
COptSpec = 'Put';
CStrike = 5;
CStrike = 5;
CSettle = '01-Jan-2006';
CSettle = '01-Jan-2006';
CExerciseDates = '01-Jan-2010';
CExerciseDates = '01-Jan-2010';
Price = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, ...
Price = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ...
CExerciseDates)
CExerciseDates)
Price =
Price =
2.727
```

References

Rubinstein, Mark, "Double Trouble," Risk 5, 1991.

See Also

crrprice

```
Purpose Instrument prices from CRR tree
```

```
Syntax [Price, PriceTree] = crprice(CRRTree, InstSet, Options)
```

```
Syntax [Price, PriceTree] = crprice(CRRTree, InstSet, Options)
```


Arguments

CRRTree	Interest-rate tree structure created by crrtree.
InstSet	Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument. For more information about how to create the InstSet structure, see instadd.
Options	(Optional) Derivatives pricing options structure created with derivset.

Description

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options) computes stock option prices using a CRR binomial tree created with crrtree.

Price is a number of instruments (NINST)-by- 1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree.PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.
crprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:

- asianbycrr: Price an Asian option from a CRR tree.
- barrierbycrr: Price a barrier option from a CRR tree.
- compoundbycrr: Price a compound option from a CRR tree.
- lookbackbycrr: Price a lookback option from a CRR tree.
- optstockbycrr: Price an American, Bermuda, or European option from a CRR tree.

Examples

Load the CRR tree and instruments from the data file deriv.mat. Price the barrier and lookback options contained in the instrument set.

```
load deriv.mat;
CRRSubSet = instselect(CRRInstSet,'Type', ...
{'Barrier', 'Lookback'});
instdisp(CRRSubSet)
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...
1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
2 Lookback call 115 01-Jan-2003 01-Jan-2006 \(0 \quad\) Lookback1 7
3 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9
[Price, PriceTree] = crrprice(CRRTree, CRRSubSet)
Price =
    12.1272
        7.6015
    11.7772
PriceTree =
    FinObj: 'BinPriceTree'
```

```
PTree: {1x5 cell}
    tObs: [0 1 2 3 4]
    dObs: [731582 731947 732313 732678 733043]
```

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer(PriceTree, CRRSubSet)

Barrierl

Lookbackl

Lookback2
See Also
crrsens, crrtree, instadd

Purpose

Instrument prices and sensitivities from CRR tree

Syntax
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

Arguments

Description

CRRTree Interest-rate tree structure created by crrtree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options) computes dollar sensitivities and prices for instruments using a binomial tree created with crrtree. NINST instruments from a financial instrument variable, InstSet, are priced. crrsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', 'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the stock price. Delta is computed by finite differences in calls to crrtree. See crrtree for information on the stock tree.

Gamma is an NINST-by- 1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the stock price. Gamma is computed by finite differences in calls to crrtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility of the stock. Vega is computed by finite differences in calls to crrtree.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Examples Load the CRR tree and instruments from the data file deriv.mat. Compute the Delta and Gamma sensitivities of the barrier and lookback options contained in the instrument set.

```
load deriv.mat;
CRRSubSet = instselect(CRRInstSet,'Type', ...
{'Barrier', 'Lookback'});
instdisp(CRRSubSet)
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...
1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1 7
3 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9
[Delta, Gamma] = crrsens(CRRTree, CRRSubSet)
Delta =
    0.6885
    0.6049
    0.8187
Gamma =
0.0310
-0.0000
0.0000
```

See Also crrprice, crrtree

crrtimespec

Purpose Specify time structure for CRR tree
Syntax TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)

Arguments

Description

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods) sets the number of levels and node times for a CRR binomial tree.

TimeSpec is a structure specifying the time layout for a CRR binomial tree.

Examples
 Specify a four-period CRR tree with time steps of 1 year.

```
ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)
TimeSpec =
                    FinObj: 'BinTimeSpec'
    ValuationDate: 731398
            Maturity: 732859
            NumPeriods: 4
            Basis: 0
        EndMonthRule: 1
tObs: [0 1 2 2 3 4]
dObs: [1x5 double]
```

See Also
crrtree, stockspec

\author{
Purpose Construct CRR stock tree
 ```
Syntax CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

```
}

\section*{Arguments}

\section*{Description}

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec) creates a structure specifying the time layout for a CRR binomial tree.

\section*{Examples Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a CRR tree with crrtree.}
```

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';

```
```

'01-Oct-2003'}
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: 'cash'
DividendAmounts: [4x1 double]
ExDividendDates: [4x1 double]
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')
RateSpec =
FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9519
Rates: 0.0500
EndTimes: 1.9945
StartTimes: 0
EndDates: 731946
StartDates: 731582
ValuationDate: 731582
Basis: 0
EndMonthRule: 1
ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)
TimeSpec =

```
```

 FinObj: 'BinTimeSpec'
 ValuationDate: 731582
 Maturity: 731946
 NumPeriods: 4
 Basis: 0
 EndMonthRule: 1
 tObs: [0 0.2493 0.4986 0.7479 0.9972]
 dObs: [l731582 731673 731764 731855 731946]
 CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)
CRRTree =
FinObj: 'BinStockTree'
Method: 'CRR'
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.2493 0.4986 0.7479 0.9972]
dObs: [731582 731672 731763 731856 731946]
STree: {1x5 cell}
UpProbs: [0.5370 0.5370 0.5370 0.5370]

```

Use treeviewer to observe the tree you have created.


See Also
crrtimespec, intenvset, stockspec

Purpose Convert inverse-discount tree to interest-rate tree
Syntax RateTree = cvtree (Tree)
Arguments
Tree Heath-Jarrow-Morton, Black-Derman-Toy, Hull-White, or Black-Karasinski tree structure using inverse-discount notation for forward rates.

Description
RateTree = cvtree(Tree) converts a tree structure using inverse-discount notation to a tree structure using rate notation for forward rates.

Examples Convert a Hull-White tree using inverse-discount notation to a Hull-White tree displaying interest-rate notation.
```

load deriv.mat;
HWTree
HWTree =
FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [00 1 2 3]
dObs: [731947 732313 732678 733043]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}

```
HWTree.FwdTree\{1\}
```

ans =
1.0279
HWTree.FwdTree{2}
ans =
1.0528 1.0356 1.0186

```

Use treeviewer to display the path of interest rates expressed in inverse-discount notation.
```

treeviewer(HWTree)

```


Use cvtree to convert the inverse-discount notation to interest-rate notation.
```

RTree = cvtree(HWTree)

```
```

RTree =
FinObj: 'HWRateTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [00 1 2 2 3]
dObs: [731947 732313 732678 733043]
CFlowT: {[4\times1 double] [3\times1 double] [2x1 double] [4]}
Probs: {[3\times1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 3 4] [2 2 3 4 4]}
RateTree: {1x4 cell}
RTree.RateTree{1}
ans =
0.0275
RTree.RateTree{2}
ans =
0.0514 0.0349 0.0185

```

Now use treeviewer to display the converted tree, showing the path of interest rates expressed as forward rates.


\section*{See Also}
disc2rate, rate2disc

\section*{date2time}

Purpose Time and frequency from dates
```

Syntax [Times, F] = date2time(Settle, Dates, Compounding, Basis,
EndMonthRule)

```

\section*{Arguments}

Settle Settlement date. A vector of serial date numbers or date strings.

Dates Vector of dates corresponding to the compounding value.

Compounding (Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors:

Compounding \(=1,2,3,4,6,12(\) Default \(=2\).
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and T is the time in periodic units; for example, \(\mathrm{T}=\) \(F\) is 1 year.

Compounding \(=365\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis.

Compounding \(=-1\)
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.
(Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252
(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

\section*{date2time}

Description

\section*{See Also}

Note To obtain accurate results from this function, the Basis and Dates arguments must be consistent. If the Dates argument contains months that have 31 days, Basis must be one of the values that allow months to contain more than 30 days; for example, Basis \(=0,3\), or 7 .
date2time is the inverse of time2date.
[Times, F] = date2time(Settle, Dates, Compounding, Basis, EndMonthRule) computes time factors appropriate to compounded rate quotes beyond the settlement date.

Times is a vector of time factors.
\(F\) is a scalar of related compounding frequencies.
cftimes in Financial Toolbox documentation
disc2rate, rate2disc, time2date

\section*{Purpose Display date entries}
```

Syntax
datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

```

\section*{Arguments}

\section*{Description}

\section*{Examples}

NumMat Numeric matrix to display.
DateForm (Optional) Date format. See datestr for available and default format flags.
datedisp(NumMat, DateForm) displays the matrix with the serial dates formatted as date strings, using a matrix with mixed numeric entries and serial date number entries. Integers between datenum('01-Jan-1900') and datenum('01-Jan-2200') are assumed to be serial date numbers, while all other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is assigned, the function prints the array to the display (CharMat = datedisp(NumMat, DateForm)).
```

NumMat = [730730, 0.03, 1200, 730100;
730731, 0.05, 1000, NaN]
NumMat =
1.0e+05 *

7.3073	0.0000	0.0120	7.3010
7.3073	0.0000	0.0100	NaN

datedisp(NumMat)
01-Sep-2000 0.03 1200 11-Dec-1998
02-Sep-2000 0.05 1000 NaN

```

\section*{Remarks}

See Also

This function is identical to the datedisp function in Financial Toolbox software.
datenum, datestr in Financial Toolbox documentation
\begin{tabular}{ll} 
Purpose & Get derivatives pricing options \\
Syntax & Value \(=\operatorname{derivget}(\) Options, 'Parameter') \\
Arguments &
\end{tabular}

Options Existing options specification structure, probably created from previous call to derivset.
Parameter Must be 'Diagnostics', 'Warnings', 'ConstRate', or 'BarrierMethod'. It is sufficient to type only the leading characters that uniquely identify the parameter. Case is ignored for parameter names.

\section*{Description}

Value = derivget(Options, 'Parameter') extracts the value of the named parameter from the derivative options structure Options. Parameter values can be 'off' or 'on', except for 'BarrierMethod', which can be 'unenhanced' or 'interp'. Specifying 'unenhanced' uses no correction calculation. Specifying 'interp' uses an enhanced valuation interpolating between nodes on barrier boundaries.

\section*{Examples}

Example 1. Create an Options structure with the value of Diagnostics set to 'on'.
```

Options = derivset('Diagnostics','on')

```

Use derivget to extract the value of Diagnostics from the Options structure.
```

Value = derivget(Options, 'Diagnostics')
Value =

```
on

Example 2. Use derivget to extract the value of ConstRate.

\section*{derivget}
```

Value = derivget(Options, 'ConstRate')
Value =
on

```

Because the value of 'ConstRate' was not previously set with derivset, the answer represents the default setting for 'ConstRate'.

Example 3. Find the value of 'BarrierMethod ' in this structure.
```

derivget(Options ,'BarrierMethod')
ans =

```
unenhanced
See Also barrierbycrr, barrierbyeqp, derivset

\section*{Purpose}

Set or modify derivatives pricing options
Syntax
```

Options = derivset(Options, 'Parameter1', Value1,
... 'Parameter4', Value4)
Options = derivset(OldOptions, NewOptions)
Options = derivset
derivset

```

\section*{Arguments}

Options (Optional) Existing options specification structure, probably created from a previous call to derivset.

Parametern The parameter must be 'Diagnostics', 'Warnings', 'ConstRate', or 'BarrierMethod'. Parameters can be entered in any order.
Valuen (BDT, BK, HJM, or HW pricing only) The parameter values for the following three options can be 'on' or 'off':
- 'Diagnostics' 'on' generates diagnostic information. The default is 'Diagnostics' 'off'.
- 'Warnings' 'on' (default) displays a warning message when executing a pricing function.
- 'ConstRate' 'on' (default) assumes a constant rate between tree nodes.

For pricing barrier options, the 'BarrierMethod' pricing option can be 'unenhanced' (default) or 'interp'. Specifying 'unenhanced' uses no correction calculation. Specifying 'interp' uses an enhanced valuation interpolating between nodes on barrier boundaries.

OldOptions Existing options specification structure.
NewOptions New options specification structure.

\section*{Description}

\section*{Examples}

Options = derivset(Options, 'Parameter1', Value1, ...
'Parameter4', Value4) creates a derivatives pricing options structure Options in which the named parameters have the specified values. Any unspecified value is set to the default value for that parameter when Options is passed to the pricing function. It is sufficient to type only the leading characters that uniquely identify the parameter name. Case is also ignored for parameter names.

If the optional input argument Options is specified, derivset modifies an existing pricing options structure by changing the named parameters to the specified values.

Note For parameter values, correct case and the complete string are required; if an invalid string is provided, the default is used.

Options = derivset(OldOptions, NewOptions) combines an existing options structure OldOptions with a new options structure NewOptions. Any parameters in NewOptions with nonempty values overwrite the corresponding old parameters in OldOptions.

Options = derivset creates an options structure Options whose fields are set to the default values.
derivset with no input or output arguments displays all parameter names and information about their possible values.
```

 Options = derivset('Diagnostics','on')
    ```
enables the display of additional diagnostic information that appears when executing pricing functions.
```

Options = derivset(Options, 'ConstRate', 'off')

```
changes the ConstRate parameter in the existing Options structure so that the assumption of constant rates between tree nodes no longer applies.
With no input or output arguments derivset displays all parameter names and information about their possible values.
```

derivset

```


See Also barrierbycrr, barrierbyeqp, derivget

Purpose Interest rates from cash flow discounting factors
```

Syntax Usage 1: Interval points are input as times in periodic units. Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes, Basis, EndMonthRule)
Usage 2: ValuationDate is passed and interval points are input as dates.
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate, Basis, EndMonthRule)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Compounding & Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors: \\
\hline & Compounding \(=1,2,3,4,6,12\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and T is the time in periodic units; for example, \(\mathrm{T}=\) \(F\) is 1 year. \\
\hline & Compounding \(=365\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
\hline & Compounding \(=-1\) \\
\hline & Disc \(=\exp \left(-T^{*} Z\right)\), where \(T\) is time in years. \\
\hline Disc & Number of points (NPOINTS) by number of curves (NCURVES) matrix of discounts. Disc are unit bond prices over investment intervals from StartTimes, when the cash flow is valued, to EndTimes, when the cash flow is received. \\
\hline
\end{tabular}

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units ending the interval to discount over.

StartTimes

EndDates

StartDates

ValuationDate

Basis
(Optional) NPOINTS-by-1 vector or scalar of times in periodic units starting the interval to discount over. Default \(=0\).

NPOINTS-by-1 vector or scalar of serial maturity dates ending the interval to discount over.
(Optional) NPOINTS-by-1 vector or scalar of serial dates starting the interval to discount over. Default \(=\) ValuationDate. StartDates must be earlier than EndDates.

Scalar value in serial date number form representing the observation date of the investment horizons entered in StartDates and EndDates. Required in Usage 2. Omitted or passed as an empty matrix to invoke Usage 1. (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- 1 = 30/360 (SIA)
- \(2=\) actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

\section*{Description}

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes, Basis, EndMonthRule) and [Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, EndDates, StartDates, ValuationDate, Basis, EndMonthRule) convert cash flow discounting factors to interest rates. disc2rate computes the yields over a series of NPOINTS time intervals given the cash flow discounts over those intervals. NCURVES different rate curves can be translated at once if they have the same time structure. The time intervals can represent a zero or a forward curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form over the NPOINTS time intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the interval to discount over, measured in periodic units.

EndTimes is an NPOINTS-by- 1 column vector of times ending the interval to discount over, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. The arguments otherwise contain values, \(T\), computed from SIA semiannual time factors, Tsemi, by the formula \(T\) = Tsemi/2 * F, where \(F\) is the compounding frequency.

Specify the investment intervals with either input times (Usage 1) or input dates (Usage 2). Entering ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

See Also rate2disc, ratetimes

Purpose Instrument prices from EQP binomial tree
```

Syntax [Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)

```

\section*{Arguments}

\section*{Description}
[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options) computes stock option prices using an EQP binomial tree created with eqptree.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a vector of observation times for each node.

PriceTree.PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.
eqpprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:
- asianbyeqp: Price an Asian option from an EQP tree.
- barrierbyeqp: Price a barrier option from an EQP tree.
- compoundbyeqp: Price a compound option from an EQP tree.
- lookbackbyeqp: Price a lookback option from an EQP tree.
- optstockbyeqp: Price an American, Bermuda, or European option from an EQP tree.

Load the EQP tree and instruments from the data file deriv.mat. Price the put options contained in the instrument set.
```

load deriv.mat;
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')
instdisp(EQPSubSet)

| Index | Type | OptSpec Strike Settle | ExerciseDates | AmericanOpt Name... | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | OptStock put | 105 | $01-J a n-2003$ | $01-J a n-2006$ | 0 | Put $105 \ldots$ |

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType...
2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic...
3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic...
[Price, PriceTree] = eqpprice(EQPTree, EQPSubSet)
Price =
2.6375
4.7444
3.9178

```
```

PriceTree =

```
PriceTree =
    FinObj: 'BinPriceTree'
    FinObj: 'BinPriceTree'
        PTree: {1x5 cell}
```

 PTree: {1x5 cell}
    ```
tObs: [0 \(\left.012 \begin{array}{llll}0 & 1\end{array}\right]\)
dObs: [731582 731947732313732678 733043]

You can use treeviewer to see the prices of these three instruments along the price tree.
treeviewer(PriceTree, EQPSubSet)


Putl


Asianll


Asian2
See Also
eqpsens, eqptimespec, eqptree

\section*{Purpose}

Instrument prices and sensitivities from EQP binomial tree
Syntax
[Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet, Options)

\section*{Arguments}

EQPTree Interest-rate tree structure created by eqptree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}
[Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet, Options) computes dollar sensitivities and prices for instruments using a binomial tree created with eqptree. NINST instruments from a financial instrument variable, InstSet, are priced. eqpsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'Lookback', and 'OptStock'. See instadd for information on instrument types.
Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the stock price. Delta is computed by finite differences in calls to eqptree. See eqptree for information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the stock price. Gamma is computed by finite differences in calls to eqptree.

Vega is an NINST-by- 1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility of the stock. Vega is computed by finite differences in calls to eqptree.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

\section*{Examples}

Load the EQP tree and instruments from the data file deriv.mat. Compute the Delta and Gamma sensitivities of the put options contained in the instrument set.
```

load deriv.mat;
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')
instdisp(EQPSubSet)
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name...
1 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Put 105...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType...
2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic...
3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic...
[Delta, Gamma] = eqpsens(EQPTree, EQPSubSet)
Delta =
-0.2336
-0.5443
-0.4516
Gamma =
0.0218
0.0000

```

See Also
eqpprice, eqptree

Purpose Specify time structure for EQP binomial tree
Syntax TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)
Arguments

\section*{Description}

TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods) sets the number of levels and node times for an equal probabilities tree.

TimeSpec is a structure specifying the time layout for an equal probabilities tree.

\section*{Examples \\ Specify a four-period tree with time steps of 1 year.}
```

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)
TimeSpec =
FinObj: 'BinTimeSpec'
ValuationDate: 731398
Maturity: 732859
NumPeriods: 4
Basis: 0
EndMonthRule: 1
tObs: [0 1 2 2 3 4]
dObs: [1x5 double]

```

See Also eqptree, stockspec

\section*{Purpose Construct EQP stock tree}

\author{
Syntax EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)
}

\section*{Arguments}

\section*{Description}

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec) constructs an equal probabilities stock tree.

EQPTree is a MATLAB structure specifying the time layout for an equal probabilities stock tree.

\section*{Examples}

Using the data provided, create a stock specification (StockSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a CRR tree with crrtree.
```

Sigma = 0.20;
AssetPrice = 50;

```
```

DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
'01-Oct-2003'}
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: 'cash'
DividendAmounts: [4x1 double]
ExDividendDates: [4x1 double]
RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')
RateSpec =
FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9519
Rates: 0.0500
EndTimes: 1.9945
StartTimes: 0
EndDates: 731946
StartDates: 731582
ValuationDate: 731582
Basis: 0
EndMonthRule: 1
ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)

```
```

TimeSpec =
FinObj: 'BinTimeSpec
ValuationDate: 731582
Maturity: 731946
NumPeriods: 4
Basis: 0
EndMonthRule: 1
tObs: [[0 0.2493 0.4986 0.7479 0.9972]
dObs: [731582 731673 731764 731855 731946]
EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)
EQPTree =
FinObj: 'BinStockTree'
Method: 'EQP'
StockSpec: [1\times1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.2493 0.4986 0.7479 0.9972]
dObs: [731582 731672 731763 731856 731946]
STree: {1x5 cell}
UpProbs: [0.5000 0.5000 0.5000 0.5000]

```

Use treeviewer to observe the tree you have created.


See Also
eqptimespec, intenvset, stockspec

\section*{fixedbybdt}

Purpose
Price fixed-rate note from BDT interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule)
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline BDTTree & Interest-rate tree structure created by bdttree. \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & Settlement dates. Number of instruments (NINST)-by-1 vector of dates representing the settlement dates of the fixed-rate note. \\
\hline Maturity & NINST-by- 1 vector of dates representing the maturity dates of the fixed-rate note. \\
\hline Reset & (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\). \\
\hline \multirow[t]{11}{*}{Basis} & (Optional) Day-count basis of the instrument. A \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - \(2=\) actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\mathrm{actual} /\) actual (ISMA) \\
\hline & - \(9=\) actual/360 (ISMA) \\
\hline
\end{tabular}
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}
[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a BDT interest-rate tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the BDT tree. The fixed-rate note argument Settle is ignored.

\section*{fixedbybdt}

Examples Price a \(10 \%\) fixed-rate note using a BDT interest-rate tree.
Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and interest-rate information needed to price the note.
load deriv.mat
Set the required values. Other arguments will use defaults.
CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Reset = 1;
Use fixedbybdt to compute the price of the note.
```

Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset)
Price =

```
92.9974

See Also
bdttree, bondbybdt, capbybdt, cfbybdt, floatbybdt, floorbybdt, swapbybdt

\section*{Purpose}

Price fixed-rate note from Black-Karasinski interest-rate tree

\author{
Syntax
}

Arguments

BKTree Interest-rate tree structure created by bktree.
CouponRate Decimal annual rate.
Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the fixed-rate note.

Maturity NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)

\section*{fixedbybk}
- 10 = actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}

\section*{Examples}
[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a Black-Karasinski tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the BK tree. The fixed-rate note argument Settle is ignored.

Price a 5\% fixed-rate note using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the note.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.05;

```
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use fixedbybk to compute the price of the note.
```

Price = fixedbybk(BKTree, CouponRate, Settle, Maturity)

```
Price =
103.5126

\section*{See Also}
bktree, bondbybk, capbybk, cfbybk, floatbybk, floorbybk, swapbybk

\section*{fixedbyhim}

Purpose

\section*{Syntax}

Arguments

Price fixed-rate note from HJM interest-rate tree
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule)

HJMTree Forward-rate tree structure created by hjmtree.
CouponRate Decimal annual rate.
Settle Settlement dates. Number of instruments (NINST)-by- 1 vector of dates representing the settlement dates of the fixed-rate note.

Maturity NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)

\section*{fixedbyhim}
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}
[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a HJM forward-rate tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the HJM tree. The fixed-rate note argument Settle is ignored.

\section*{fixedbyhim}

Examples Price a 4\% fixed-rate note using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the note.
load deriv.mat
Set the required values. Other arguments will use defaults.
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Use fixedbyhjm to compute the price of the note.
Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)
Price =
98.7159

See Also bondbyhjm, capbyhjm, cfbyhjm, floatbyhjm, floorbyhjm, hjmtree, swapbyhjm

\section*{fixedbyhw}

\section*{Purpose}

Price fixed-rate note from Hull-White interest-rate tree

\author{
Syntax
}

Arguments

HWTree Interest-rate tree structure created by hwtree.
CouponRate Decimal annual rate.
Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the fixed-rate note.

Maturity NINST-by-1 vector of dates representing the maturity dates of the fixed-rate note.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)

\section*{fixedbyhw}
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}

\section*{Examples}
[Price, PriceTree] = floatbybj(HWTree, CouponRate, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a fixed-rate note from a Hull-White tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every fixed-rate note is set to the ValuationDate of the HW tree. The fixed-rate note argument Settle is ignored.

Price a 5\% fixed-rate note using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the note.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

CouponRate = 0.05;

```
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use fixedbyhw to compute the price of the note.
```

Price = fixedbyhw(HWTree, CouponRate, Settle, Maturity)

```
Price =
103.5126

\section*{See Also}
bondbyhw, capbyhw, cfbyhw, floatbyhw, floorbyhw, hwtree, swapbyhw

\section*{fixedbyzero}

Purpose
Price fixed-rate note from set of zero curves

\section*{Syntax Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule)}

\section*{Arguments}

RateSpec Structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

CouponRate Decimal annual rate.
Settle Settlement date. Settle must be earlier than Maturity.

Maturity Maturity date.
Reset (Optional) Frequency of payments per year. Default \(=1\).

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- 9 = actual/360 (ISMA)

\section*{fixedbyzero}
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

All inputs are either scalars or NINST-by-1 vectors unless otherwise specified. Any date may be a serial date number or date string. An optional argument may be passed as an empty matrix [].

\section*{Description}

Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) computes the price of a fixed-rate note from a set of zero curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of fixed-rate note prices. Each column arises from one of the zero curves.

Examples Price a \(4 \%\) fixed-rate note using a set of zero curves.
Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the note.
load deriv.mat
Set the required values. Other arguments will use defaults.
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use fixedbyzero to compute the price of the note.

Price \(=\) fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price =
98.7159

See Also
bondbyzero, cfbyzero, floatbyzero, swapbyzero

\section*{Purpose}

Price floating-rate note from BDT interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule)
}

\section*{Arguments}
\begin{tabular}{ll} 
BDTTree & Interest-rate tree structure created by bdttree. \\
Spread & \begin{tabular}{l} 
Number of instruments (NINST)-by-1 vector of number \\
of basis points over the reference rate.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement dates. NINST-by-1 vector of dates \\
representing the settlement dates of the floating-rate \\
note.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity \\
dates of the floating-rate note.
\end{tabular} \\
Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
frequency of payments per year. Default = 1. \\
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular}
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)

\section*{floatbybdt}
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}
[Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options,EndMonthRule) computes the price of a floating-rate note from a BDT tree.
Price is an NINST-by-1 vector of expected prices of the floating-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the BDT tree. The floating-rate note argument Settle is ignored.

Examples

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Use floatbybdt to compute the price of the note.
```

Price = floatbybdt(BDTTree, Spread, Settle, Maturity)
Price =
100.4865

```

See Also bdttree, bondbybdt, capbybdt, cfbybdt, fixedbybdt, floorbybdt, swapbybdt

\section*{floatbybk}

Purpose
Price floating-rate note from Black-Karasinski interest-rate tree

\section*{Syntax}
```

[Price, PriceTree] = floatbybk(BKTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)

```

\section*{Arguments}
\begin{tabular}{ll} 
BKTree & \begin{tabular}{l} 
Interest-rate tree structure created by bktree. \\
Spread
\end{tabular} \\
Settle & \begin{tabular}{l} 
Number of instruments (NINST)-by-1 vector of number \\
of basis points over the reference rate.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Settlement dates. NINST-by-1 vector of dates \\
representing the settlement dates of the floating-rate \\
note.
\end{tabular} \\
Reset & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity \\
dates of the floating-rate note.
\end{tabular} \\
Basis & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
frequency of payments per year. Default = 1. \\
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular}
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.
EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}

Examples
[Price, PriceTree] = floatbybk(BKTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options,EndMonthRule) computes the price of a floating-rate note from a Black-Karasinski tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the BK tree. The floating-rate note argument Settle is ignored.

Price a 20 basis point floating-rate note using a Black-Karasinski interest-rate tree.

\section*{floatbybk}

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest-rate information needed to price the note. load deriv.mat;

Set the required values. Other arguments will use defaults.
```

Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

```

Use floatbybk to compute the price of the note.
```

Price = floatbybk(BKTree, Spread, Settle, Maturity)
Price =
100.3825

```
bktree, bondbybk, capbybk, cfbybk, fixedbybk, floorbybk, swapbybk

\section*{floatbyhim}

\section*{Purpose}

Price floating-rate note from HJM interest-rate tree

\author{
Syntax
}

Arguments
HJMTree Forward-rate tree structure created by hjmtree.
Spread Number of instruments (NINST)-by-1 vector of number of basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the floating-rate note.

Maturity NINST-by-1 vector of dates representing the maturity dates of the floating-rate note.
Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)

\section*{floatbyhim}
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- \(12=\mathrm{actual} / 365\) (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default = 100 .
Options (Optional) Derivatives pricing options structure created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}

\section*{Examples}
[Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a floating-rate note from an HJM tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the HJM tree. The floating-rate note argument Settle is ignored.

Price a 20 basis point floating-rate note using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the note.

\section*{floatbyhim}
```

load deriv.mat

```

Set the required values. Other arguments will use defaults.
```

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

```

Use floatbyhjm to compute the price of the note.
```

Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)
Price =
100.5529

```

See Also
bondbyhjm, capbyhjm, cfbyhjm, fixedbyhjm, floorbyhjm, hjmtree, swapbyhjm

\section*{floatbyhw}

Purpose
Price floating-rate note from Hull-White interest-rate tree

\section*{Syntax}

\section*{Arguments}
[Price, PriceTree] = floatbyhw(HWTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule)

HWTree Interest-rate tree structure created by hwtree.
Spread Number of instruments (NINST)-by-1 vector of number of basis points over the reference rate.
Settle Settlement dates. NINST-by-1 vector of dates representing the settlement dates of the floating-rate note.

Maturity NINST-by-1 vector of dates representing the maturity dates of the floating-rate note.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual \(/ 360\)
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

\section*{Description}
[Price, PriceTree] = floatbyhw(HWTree, Spread, Settle, Maturity, Reset, Basis, Principal, Options, EndMonthRule) computes the price of a floating-rate note from a Hull-White tree.

Price is an NINST-by- 1 vector of expected prices of the floating-rate note at time 0 .

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
The Settle date for every floating-rate note is set to the ValuationDate of the HW tree. The floating-rate note argument Settle is ignored.

\section*{Examples}

Price a 20 basis point floating-rate note using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest-rate information needed to price the note.

\section*{floarbyhw}

\section*{load deriv.mat}

Set the required values. Other arguments will use defaults.
```

Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

```

Use floatbyhw to compute the price of the note.
```

Price = floatbyhw(HWTree, Spread, Settle, Maturity)
Price =
100.3825

```

\section*{See Also}
bondbyhw, capbyhw, cfbyhw, fixedbyhw, floorbyhw, hwtree, swapbyhw

\section*{Purpose}

Price floating-rate note from set of zero curves

\author{
Syntax \\ Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset, Basis, Principal, EndMonthRule)
}

\section*{Arguments}
\begin{tabular}{ll} 
RateSpec & \begin{tabular}{l} 
Structure containing the properties of an interest-rate \\
structure. See intenvset for information on creating \\
RateSpec.
\end{tabular} \\
Spread & \begin{tabular}{l} 
Number of basis points over the reference rate.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. Settle must be earlier than \\
Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Maturity date.
\end{tabular} \\
Reset & \begin{tabular}{l} 
(Optional) Frequency of payments per year. Default \\
\(=1\).
\end{tabular}
\end{tabular}

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- 9 = actual/360 (ISMA)

\section*{floatbyzero}
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

All inputs are either scalars or NINST-by-1 vectors unless otherwise specified. Any date may be a serial date number or date string. An optional argument may be passed as an empty matrix [].

\section*{Description}

Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) computes the price of a floating-rate note from a set of zero curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of floating-rate note prices. Each column arises from one of the zero curves.

Examples Price a 20-basis point floating-rate note using a set of zero curves.
Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the note.
load deriv.mat
Set the required values. Other arguments will use defaults.
```

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

```

Use floatbyzero to compute the price of the note.
```

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)
Price =
100.5529

```

See Also bondbyzero, cfbyzero, fixedbyzero, swapbyzero

\section*{floorbybdt}

Purpose
\(\begin{array}{ll}\text { Syntax } & \text { [Price, PriceTree] }=\text { floorbybdt(BDTTree, Strike, Settle, Maturity, } \\ \text { Reset, Basis, Principal, Options) }\end{array}\)

\section*{Arguments}

BDTTree Interest-rate tree structure created by bdttree.
Strike \(\quad\) Number of instruments (NINST)-by-1 vector of rates at which the floor is exercised.
Settle Settlement date. NINST-by-1 vector of dates representing the settlement dates of the floor. The Settle date for every floor is set to the ValuationDate of the BDT tree. The floor argument Settle is ignored.
Maturity NINST-by-1 vector of dates representing the maturity dates of the floor.

Reset (Optional) NINST-by-1 vector representing the frequency of payments per year. Default \(=1\).
Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)

\section*{floorbybdt}
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

Examples Example 1. Price a \(10 \%\) floor instrument using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time and interest-rate information needed to price the floor instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

\section*{floorbybdt}

Use floorbybdt to compute the price of the floor instrument.
```

Price = floorbybdt(BDTTree, Strike, Settle, Maturity)
Price =

```
0.1770

Example 2. Here is a second example, showing the pricing of a \(10 \%\) floor instrument using a newly created BDT tree.

First set the required arguments for the three needed specifications.
```

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

```

Next create the specifications.
```

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

```

Now create the BDT tree from the specifications.
```

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

```

Set the floor arguments. Remaining arguments will use defaults.

\section*{floorbybdt}
```

FloorStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
FloorReset = 1;

```

Finally, use floorbybdt to find the price of the floor instrument.
```

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,...
FloorReset)
Price =
0.0431

```

See Also
bdttree, capbybdt, cfbybdt, swapbybdt

\section*{floorbybk}

Purpose
Price floor instrument from Black-Karasinski interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = floorbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)
}

\section*{Arguments}
\begin{tabular}{ll} 
BKTree & \begin{tabular}{l} 
Interest-rate tree structure created by bktree. \\
Strike
\end{tabular} \\
Settle & \begin{tabular}{l} 
Number of instruments (NINST)-by-1 vector of rates at \\
which the floor is exercised.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Settlement date. NINST-by-1 vector of dates \\
representing the settlement dates of the floor. The \\
Settle date for every floor is set to the ValuationDate \\
of the BK tree. The floor argument Settle is ignored.
\end{tabular} \\
Reset & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity \\
dates of the floor.
\end{tabular} \\
Basis & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
frequency of payments per year. Default =1. \\
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular}
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}

Examples Price a \(3 \%\) floor instrument using a Black-Karasinski interest-rate tree.
Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and interest rate information needed to price the floor instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

```

\section*{floorbybk}

Use floorbyhw to compute the price of the floor instrument.
```

Price = floorbybk(BKTree, Strike, Settle, Maturity)
Price =
0.2061

```

See Also
bktree, capbybk, cfbybk, swapbybk

\section*{floorbyblk}

\section*{Purpose}

Price floors using the Black option pricing model
Syntax
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility) [FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{ll} 
RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate term \\
structure. For more information, see intenvset.
\end{tabular} \\
Strike & \begin{tabular}{l} 
NINST-by-1 vector of rates at which the floor is \\
exercised, as a decimal number.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Scalar representing the settle date of the floor.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
Scalar representing the maturity date of the floor.
\end{tabular} \\
Volatility & NINST-by-1 vector of volatilities. \\
Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
frequency of payments per year. Default is 1.
\end{tabular} \\
Principal & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
notional principal amount. Default is 100.
\end{tabular} \\
& \begin{tabular}{l} 
NINST-by-1 vector representing the basis used when \\
annualizing the input forward rate.
\end{tabular} \\
& - \(0=\) actual/actual (default)
\end{tabular}

\section*{floorbyblk}
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)

ValuationDate (Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date.

Note All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

\section*{Description}
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility)
[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility, 'Name1', Value1...)
Use floorbyblk to price floors using the Black option pricing model.
The outputs are:
- FloorPrice - NINST-by-1 expected prices of the floor.
- Floorlets - NINST-by-NCF array of floorlets, padded with NaNs.

\section*{Examples}

Consider an investor who gets into a contract that floors the interest rate on a \(\$ 100,000\) loan at \(6 \%\) quarterly compounded for 3 months, starting on January 1, 2009'. Assuming that on January 1, 2008 the zero rate is \(6.9394 \%\) continuously compounded and the volatility is \(20 \%\), use this data to compute the floor price.
Calculate the RateSpec:
```

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

```

Compute the price of the cap:
```

Settle = 'Jan-01-2009'; % floor starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
FloorRate = 0.06;
FloorReset = 4;
Principal=100000;
FloorPrice = floorbyblk(RateSpec, FloorRate, Settle, Maturity, Volatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)
FloorPrice =
37.4864

```

See Also capbyblk

\section*{floorbyhim}

Purpose
Syntax
[Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{ll} 
HJMTree & \begin{tabular}{l} 
Forward-rate tree structure created by hjmtree. \\
Strike \\
Number of instruments (NINST)-by-1 vector of rates \\
at which the floor is exercised.
\end{tabular} \\
Settle & \begin{tabular}{l} 
Settlement date. NINST-by-1 vector of dates \\
representing the settlement dates of the floor. \\
The Settle date for every floor is set to the \\
ValuationDate of the HJM tree. The floor argument \\
Settle is ignored.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity \\
dates of the floor.
\end{tabular} \\
Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the \\
frequency of payments per year. Default =1. \\
(Optional) Day-count basis of the instrument. A \\
vector of integers.
\end{tabular}
\end{tabular}
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)

\section*{floorbyhim}
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}
[Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from an HJM tree.

Price is an NINST-by-1 vector of the expected prices of the floor at time 0 .

PriceTree is the tree structure with values of the floor at each node.
Examples Price a \(3 \%\) floor instrument using an HJM forward-rate tree.
Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the time and forward-rate information needed to price the floor instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

```

\section*{floorbyhim}

Use floorbyhjm to compute the price of the floor instrument.
```

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)
Price =
0.0486

```

See Also
capbyhjm, cfbyhjm, hjmtree, swapbyhjm

\section*{Purpose}

Price floor instrument from Hull-White interest-rate tree
Syntax [Price, PriceTree] = floorbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal, Options)

\section*{Arguments}
\begin{tabular}{ll} 
HWTree & \begin{tabular}{l} 
Interest-rate tree structure created by hwtree. \\
Number of instruments (NINST)-by-1 vector of rates \\
at which the floor is exercised.
\end{tabular} \\
Strike & \begin{tabular}{l} 
Settlement date. NINST-by-1 vector of dates \\
representing the settlement dates of the floor. \\
The Settle date for every floor is set to the \\
ValuationDate of the HW tree. The floor argument \\
Settle is ignored.
\end{tabular} \\
Maturity & \begin{tabular}{l} 
NINST-by-1 vector of dates representing the maturity \\
dates of the floor.
\end{tabular} \\
Reset & \begin{tabular}{l} 
(Optional) NINST-by-1 vector representing the
\end{tabular} \\
frequency of payments per year. Default = 1. \\
Basis & (Optional) Day-count basis of the instrument. A \\
& vector of integers. \\
& - \(0=\) actual/actual (default) \\
& - \(1=30 / 360\) (SIA) \\
& - \(2=\) actual/360 \\
& - \(3=\) actual/365 \\
& - \(4=30 / 360\) (PSA) \\
& - \(5=30 / 360\) (ISDA) \\
& - \(6=30 / 360\) (European) \\
& - \(7=\) actual/365 (Japanese)
\end{tabular}

\section*{floorbyhw}
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default \(=100\).

Options (Optional) Derivatives pricing options structure created with derivset.

\section*{Description}
[Price, PriceTree] = floorbyhw(HWTree, Strike, Settlement, Maturity, Reset, Basis, Principal, Options) computes the price of a floor instrument from an HW tree.

Price is an NINST-by- 1 vector of the expected prices of the floor at time 0 .

PriceTree is the tree structure with values of the floor at each node.
Examples Price a \(3 \%\) floor instrument using a Hull-White interest-rate tree.
Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and interest rate information needed to price the floor instrument.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

Strike = 0.03;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

```

Use floorbyhw to compute the price of the floor instrument. Price = floorbyhw(HWTree, Strike, Settle, Maturity) Price =
0.4616

See Also
capbyhw, cfbyhw, hwtree, swapbyhw

Purpose
Calculate price of gap digital options using Black-Scholes model

\author{
Syntax \\ Price = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold)
}

Arguments

\section*{Description}

\section*{Examples}
\begin{tabular}{ll} 
RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l} 
Stock specification. See stockspec.
\end{tabular} \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
Strike & NINST-by-1 vector of payoff strike price values. \\
StrikeThreshold & \begin{tabular}{l} 
NINST-by-1 vector of strike values that determine \\
if the option pays off.
\end{tabular}
\end{tabular}

Price = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold) computes gap option prices using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Consider a gap call and put options on a nondividend paying stock with a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the stock is trading at 50 . Using this data, compute the price of the option if the risk-free rate is \(9 \%\), the strike threshold is 50 , and the volatility is \(20 \%\).

Create the RateSpec:
```

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';

```
```

Compounding = -1;
Rates = 0.09;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);

```

Define the StockSpec:
```

AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);

```

Define the call and put options:
```

OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;

```

Calculate the price:
```

Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)
Pgap =
-0.0053
4.4866

```

See Also assetbybls, cashbybls, gapsensbybls, supersharebybls

\section*{Purpose}

\author{
Syntax
}

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold) PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold, OutSpec)

\section*{Arguments}
\begin{tabular}{ll} 
RateSpec & \begin{tabular}{l} 
The annualized, continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l} 
Stock specification. See stockspec.
\end{tabular} \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
Strike & NINST-by-1 vector of strike price values. \\
StrikeThreshold & \begin{tabular}{l} 
NINST-by-1 vector of strike values that determine \\
if the option pays off.
\end{tabular} \\
OutSpec & \begin{tabular}{l} 
(Optional) All optional inputs are specified as \\
matching parameter name/value pairs. The
\end{tabular} \\
& \begin{tabular}{l} 
parameter name is specified as a character string, \\
followed by the corresponding parameter value. \\
You can specify parameter name/value pairs may \\
in any order. Names are case-insensitive and
\end{tabular} \\
partial string matches are allowed provided no \\
ambiguities exist. Valid parameter names are:
\end{tabular}
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are 'Price',
```

'Delta', 'Gamma', 'Vega','Lambda', 'Rho',
'Theta', or 'All'.
For example,OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

```

To invoke from a function: [Price, Lambda, Rho] = gapsensbybls(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})

OutSpec \(=\) \{'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec \(=\) \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.
- Default is OutSpec = \{'Price' \(\}\).

\section*{Description}

\section*{Examples}

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold) computes gap option prices using the Black-Scholes option pricing model.

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, StrikeThreshold, OutSpec) includes an OutSpec argument defined as parameter/value pairs, and computes gap option prices and sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and sensitivities.

Consider a gap call and put options on a nondividend paying stock with a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the stock is trading at 50 . Using this data, compute the price and sensitivity of the option if the risk-free rate is \(9 \%\), the strike threshold is 50 , and the volatility is \(20 \%\).

Create the RateSpec:
```

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Compounding = -1;
Rates = 0.09;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);

```

Define the StockSpec:
```

AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);

```

Define the call and put options:
```

OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;

```

Calculate the price:
```

Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)
Pgap =
-0.0053
4.4866

```

Compute the gamma and delta:
```

OutSpec = {'gamma'; 'delta'};
[Gamma ,Delta] = gapsensbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, StrikeThreshold, 'OutSpec', OutSpec)
Gamma =

```

\title{
0.0724 \\ 0.0724 \\ Delta = \\ 0.2852 \\ -0.7148
}

See Also gapbybls

\section*{hedgeopt}

Purpose
Allocate optimal hedge for target costs or sensitivities

\author{
Syntax \\ [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price, CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, ConSet)
}

\section*{Arguments}
\begin{tabular}{ll} 
Sensitivities & \begin{tabular}{l} 
Number of instruments (NINST) by number of \\
sensitivities (NSENS) matrix of dollar sensitivities \\
of each instrument. Each row represents a \\
different instrument. Each column represents \\
a different sensitivity.
\end{tabular} \\
Price & \begin{tabular}{l} 
NINST-by-1 vector of portfolio instrument unit \\
prices.
\end{tabular} \\
CurrentHolds & \begin{tabular}{l} 
NINST-by-1 vector of contracts allocated to each \\
instrument.
\end{tabular} \\
FixedInd & \begin{tabular}{l} 
(Optional) Number of fixed instruments \\
(NFIXED)-by-1 vector of indices of instruments \\
to hold fixed. For example, to hold the first and \\
third instruments of a 10 instrument portfolio
\end{tabular} \\
NumCosts & \begin{tabular}{l} 
unchanged, set FixedInd \(=\) [1 3]. Default \(=[]\), \\
no instruments held fixed. \\
(Optional) Number of points generated along
\end{tabular} \\
& \begin{tabular}{l} 
the cost frontier when a vector of target costs \\
(TargetCost) is not specified. The default is
\end{tabular} \\
10 equally spaced points between the point \\
of minimum cost and the point of minimum \\
exposure. When specifying TargetCost, enter \\
NumCosts as an empty matrix [ ].
\end{tabular}
\begin{tabular}{ll} 
TargetCost & \begin{tabular}{l} 
(Optional) Vector of target cost values along the \\
cost frontier. If TargetCost is empty, or not \\
entered, hedgeopt evaluates NumCosts equally \\
spaced target costs between the minimum cost \\
and minimum exposure. When specified, the \\
elements of TargetCost should be positive \\
numbers that represent the maximum amount of \\
money the owner is willing to spend to rebalance \\
the portfolio.
\end{tabular} \\
TargetSens & \begin{tabular}{l} 
(Optional) 1-by-NSENS vector containing the \\
target sensitivity values of the portfolio. When
\end{tabular} \\
ConSet & \begin{tabular}{l} 
specifying TargetSens, enter NumCosts and
\end{tabular} \\
& \begin{tabular}{l} 
(Optional) Number of constraints (NCONS) \\
by number of instruments (NINST) matrix \\
of additional conditions on the portfolio \\
reallocations. An eligible NINST-by-1 vector of \\
contract holdings, PortWts, satisfies all the \\
inequalities A*PortWts <= b, where
\end{tabular} \\
A = ConSet (:, 1: end-1) and b = \\
ConSet (: , end).
\end{tabular}

\section*{hedgeopt}

\section*{Notes}

The user-specified constraints included in ConSet may be created with the functions pcalims or portcons. However, the portcons default PortHolds positivity constraints are typically inappropriate for hedging problems since short-selling is usually required.

NPOINTS, the number of rows in PortSens and PortHolds and the length of PortCost, is inferred from the inputs. When the target sensitivities, TargetSens, is entered, NPOINTS = 1; otherwise NPOINTS \(=\) NumCosts, or is equal to the length of the TargetCost vector.

Not all problems are solvable (for example, the solution space may be infeasible or unbounded, or the solution may fail to converge). When a valid solution is not found, the corresponding rows of PortSens and PortHolds and the elements of PortCost are padded with NaNs as placeholders.

\section*{Description}
[PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price, CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, ConSet) allocates an optimal hedge by one of two criteria:
- Minimize portfolio sensitivities (exposure) for a given set of target costs.
- Minimize the cost of hedging a portfolio given a set of target sensitivities.

Hedging involves the fundamental tradeoff between portfolio insurance and the cost of insurance coverage. This function lets investors modify portfolio allocations among instruments to achieve either of the criteria. The chosen criterion is inferred from the input argument list. The problem is cast as a constrained linear least-squares problem.

PortSens is a number of points (NPOINTS)-by-NSENS matrix of portfolio sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the best hedge possible is chosen.

PortCost is a 1-by-NPOINTS vector of total portfolio costs.
PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each instrument. These are the reallocated portfolios.

\section*{See Also hedgeslf}
pcalims, portcons, portopt in Financial Toolbox documentation
lsqlin in Optimization Toolbox documentation

\section*{hedgeslf}

Purpose
Self-financing hedge

\author{
Syntax \\ [PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price, CurrentHolds, FixedInd, ConSet)
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Sensitivities & Number of instruments (NINST) by number of sensitivities (NSENS) matrix of dollar sensitivities of each instrument. Each row represents a different instrument. Each column represents a different sensitivity. \\
\hline Price & NINST-by-1 vector of instrument unit prices. \\
\hline CurrentHolds & NINST-by- 1 vector of contracts allocated in each instrument. \\
\hline FixedInd & (Optional) Empty or number of fixed instruments (NFIXED)-by- 1 vector of indices of instruments to hold fixed. The default is FixedInd \(=1\); the holdings in the first instrument are held fixed. If NFIXED instruments will not be changed, enter all their locations in the portfolio in a vector. If no instruments are to be held fixed, enter FixedInd \(=[]\). \\
\hline ConSet & (Optional) Number of constraints (NCONS)-by-NINST matrix of additional conditions on the portfolio reallocations. An eligible NINST-by-1 vector of contract holdings, PortHolds, satisfies all the inequalities A*PortHolds <= b, where \(\mathrm{A}=\operatorname{ConSet}(:, 1:\) end-1) and \(\mathrm{b}=\) ConSet(:,end). \\
\hline
\end{tabular}

\section*{Description}

\section*{Examples}
[PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price, CurrentHolds, FixedInd, ConSet) allocates a self-financing hedge among a collection of instruments. hedgeslf finds the reallocation in a portfolio of financial instruments that hedges the portfolio against market moves and that is closest to being self-financing (maintaining constant portfolio value). By default the first instrument entered is hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the best possible hedge is chosen.

PortValue is the total portfolio value (scalar). When a perfectly self-financing hedge exists, PortValue is equal to dot(Price, CurrentWts) of the initial portfolio.

PortHolds is an NINST-by-1 vector of contracts allocated to each instrument. This is the reallocated portfolio.

\section*{Notes}
1. The constraints PortHolds (FixedInd) = CurrentHolds(FixedInd) are appended to any constraints passed in ConSet. Pass FixedInd = [ ] to specify all constraints through ConSet.
2. The default constraints generated by portcons are inappropriate, since they require the sum of all holdings to be positive and equal to one.
3. hedgeself first tries to find the allocations of the portfolio that make it closest to being self-financing, while reducing the sensitivities to 0 . If no solution is found, it finds the allocations that minimize the sensitivities. If the resulting portfolio is self-financing, PortValue is equal to the value of the original portfolio.

Example 1. Perfect sensitivity cannot be reached.
```

Sens = [0.44 0.32; 1.0 0.0];

```

\section*{hedgeslf}
```

Price = [1.2; 1.0];
WO = [1; 1];
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0)
PortSens =
0.0000
0.3200
PortValue =
0.7600
PortHolds =
1.0000
-0.4400

```

Example 2. Constraints are in conflict.
```

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
WO = [1; 1];
ConSet = pcalims([2 2])
% O.K. if nothing fixed.
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, WO,...
[], ConSet)
PortSens =
2.8800
0.6400
PortValue =

```
```

 4.4000
 PortHolds =
2
2
% WO(1) is not greater than 2.
[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, wo,...
1, ConSet)
??? Error using ==> hedgeslf
Overly restrictive allocation constraints implied by ConSet and
by fixing the weight of instruments(s): 1

```

Example 3. Constraints are impossible to meet.
```

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
WO = [1; 1];
ConSet = pcalims([2 2],[[1 1]);
[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,...
[],ConSet)
??? Error using ==> hedgeslf
Overly restrictive allocation constraints specified in ConSet

```

\section*{See Also hedgeopt}
lsqlin in Optimization Toolbox documentation
portcons in Financial Toolbox documentation

\section*{himprice}

Purpose Instrument prices from HJM interest-rate tree
Syntax Price = hjmprice(HJMTree, InstSet, Options)
Arguments
\begin{tabular}{cl} 
HJMTree & \begin{tabular}{l} 
Heath-Jarrow-Morton tree sampling a forward-rate \\
process. See hjmtree for information on creating \\
HJMTree.
\end{tabular} \\
InstSet & \begin{tabular}{l} 
Variable containing a collection of instruments. \\
Instruments are categorized by type. Each type can \\
have different data fields. The stored data field is a \\
row vector or string for each instrument.
\end{tabular} \\
Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure \\
created with derivset.
\end{tabular}
\end{tabular}

\section*{Description}

Price = hjmprice(HJMTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with hjmtree. A subset of NINST instruments from a financial instrument variable, InstSet, are priced.

Price is a NINST-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.
hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.
Related single-type pricing functions are:
- bondbyhjm: Price a bond from an HJM tree.
- capbyhjm: Price a cap from an HJM tree.
- cfbyhjm: Price an arbitrary set of cash flows from an HJM tree.
- fixedbyhjm: Price a fixed-rate note from an HJM tree.
- floatbyhjm: Price a floating-rate note from an HJM tree.
- floorbyhjm: Price a floor from an HJM tree.
- optbndbyhjm: Price a bond option from an HJM tree.
- optembndbyhjm: Price a bond with embedded option by an HJM tree.
- swapbyhjm: Price a swap from an HJM tree.
- swaptionbyhjm: Price a swaption from an HJM tree.

\section*{Examples}

Load the HJM tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});
instdisp(HJMSubSet)

Index	Type CouponRate Settle	Maturity	Period	Name ...	
1	Bond	0.04	$01-\operatorname{Jan}-2000$	$01-\operatorname{Jan}-2003$	1
2	Bond	0.04	01-Jan-2000 $01-\operatorname{Jan}-2004$	2	4% bond
2	01 bond				

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 3% Cap
[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

```

\section*{himprice}
```

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
98.7159
97.5280
6.2831
PriceTree =
FinObj: 'HJMPriceTree'
PBush: {1x5 cell}
AIBush: {1x5 cell}
tObs: [0 1 2 3 4]

```

You can use treeviewer to see the prices of these three instruments along the price tree.
```

treeviewer(PriceTree, HJMSubSet)

```


First 4\% Bond (Maturity 2003)


Second 4\% Bond (Maturity 2004)

\(3 \%\) Cap
See Also
hjmsens, hjmtree, hjmvolspec, instadd, intenvprice, intenvsens

Purpose
Syntax

Arguments
\begin{tabular}{cl} 
HJMTree & \begin{tabular}{l} 
Heath-Jarrow-Morton tree sampling a forward-rate \\
process. See hjmtree for information on creating \\
HJMTree.
\end{tabular} \\
InstSet & \begin{tabular}{l} 
Variable containing a collection of instruments.
\end{tabular} \\
& \begin{tabular}{l} 
Instruments are categorized by type. Each type can \\
have different data fields. The stored data field is a \\
row vector or string for each instrument.
\end{tabular} \\
Options & \begin{tabular}{l} 
(Optional) Derivatives pricing options structure \\
created with derivset.
\end{tabular}
\end{tabular}

\section*{Description}

Instrument prices and sensitivities from HJM interest-rate tree
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options)
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with hjmtree. NINST instruments from a financial instrument variable, InstSet, are priced. hjmsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to hjmtree. See hjmtree for information on the observed yield curve.

Gamma is an NINST-by- 1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to hjmtree.

Vega is an NINST-by- 1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility
\(\sigma(t, T)\). Vega is computed by finite differences in calls to hjmtree. See hjmvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.
Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a \(1 \%\) shift in the volatility process.

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.
```

load deriv.mat;
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});
instdisp(HJMSubSet)
Index Type CouponRate Settle Maturity Period Name
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4\% bond
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 4\% bond

Index	Type Strike Settle	Maturity	CapReset...	Name ...	
3	Cap 0.03	$01-J a n-2000$	$01-J a n-2004$	1	3% Cap

[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Delta =

```

\section*{himsens}
\(-272.6462\)
-347.4315
294.9700

Gamma =
\(1.0 \mathrm{e}+003\) *
1.0299
1.6227
6.8526

\section*{See Also \\ hjmprice, hjmtree, hjmvolspec, instadd}

\section*{Purpose}

Specify time structure for HJM interest-rate tree

\section*{Syntax}

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

ValuationDate Scalar date marking the pricing date and first observation in the tree. Specify as serial date number or date string.

Maturity \(\quad\) Number of levels (depth) of the tree. A number of levels (NLEVELS)-by-1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order.
Compounding (Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default = 1. This argument determines the formula for the discount factors:

Compounding \(=1,2,3,4,6,12\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and T is the time in periodic units; for example, \(\mathrm{T}=\) \(F\) is 1 year.

Compounding \(=365\)
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis.

Compounding \(=-1\)
Disc \(=\exp (-T * Z)\), where \(T\) is time in years.

\section*{himtimespec}

Description TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for an HJM tree and determines the mapping between dates and time for rate quoting.
TimeSpec is a structure specifying the time layout for hjmtree. The state observation dates are [Settle; Maturity(1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.

\section*{Examples}

Specify an eight-period tree with semiannual nodes (every six months). Use exponential compounding to report rates.
```

Compounding = -1;
ValuationDate = '15-Jan-1999';
Maturity = datemnth(ValuationDate, 6*(1:8)');
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
FinObj: 'HJMTimeSpec'
ValuationDate: 730135
Maturity: [8\times1 double]
Compounding: -1
Basis: 0
EndMonthRule: 1

```

\section*{See Also \\ hjmtree, hjmvolspec}
\begin{tabular}{ll} 
Purpose & Construct HJM interest-rate tree \\
Syntax & HJMTree \(=\) hjmtree(VolSpec, RateSpec, TimeSpec) \\
Arguments &
\end{tabular}

VolSpec Volatility process specification. Sets the number of factors and the rules for computing the volatility \(\sigma(t, T)\) for each factor. See hjmvolspec for information on the volatility process.
RateSpec Interest-rate specification for the initial rate curve. See intenvset for information on declaring an interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation dates of the HJM tree and the compounding rule for date to time mapping and price-yield formulas. See hjmtimespec for information on the tree structure.
```

Description HJMTree $=$ hjmtree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and forward-rate information on a bushy tree.

```
```

Examples Using the data provided, create an HJM volatility specification

```
Examples Using the data provided, create an HJM volatility specification
(VolSpec), rate specification (RateSpec), and tree time layout
(VolSpec), rate specification (RateSpec), and tree time layout
specification (TimeSpec). Then use these specifications to create an
specification (TimeSpec). Then use these specifications to create an
HJM tree using hjmtree.
HJM tree using hjmtree.
Compounding = 1;
Compounding = 1;
Compounding = 1;
ValuationDate = '01-01-2000';
ValuationDate = '01-01-2000';
ValuationDate = '01-01-2000';
StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];
StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];
StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Rates = [.1; .11; .12; .125; .13];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
Volatility = [.2; .19; .18; .17; .16];
Volatility = [.2; .19; .18; .17; .16];
CurveTerm = [1; 2; 3; 4; 5];
```

CurveTerm = [1; 2; 3; 4; 5];

```
CurveTerm = [1; 2; 3; 4; 5];
```

```
HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);
RateSpec = intenvset('Compounding', Compounding,...
    'ValuationDate', ValuationDate,...
    'StartDates', StartDate,...
    'EndDates', EndDates,...
    'Rates', Rates);
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)
```

Use treeviewer to observe the tree you have created.

```
treeviewer(HJMTree)
```


Purpose

Specify HJM interest-rate volatility process

Syntax

Arguments
Volspec $=$ hjmvolspec(varargin)

The arguments to hjmvolspec vary according to the type and number of volatility factors specified when calling the function. Factors are specified by pairs of names and parameter sets. Factor names can be 'Constant', 'Stationary', 'Exponential', 'Vasicek', or 'Proportional'. The parameter set is specific for each of these factor types:

- Constant volatility (Ho-Lee): VolSpec = hjmvolspec('Constant', Sigma_0)
- Stationary volatility: VolSpec = hjmvolspec('Stationary', CurveVol, CurveTerm)
- Exponential volatility: VolSpec = hjmvolspec('Exponential', Sigma_0, Lambda)
- Vasicek, Hull-White: VolSpec = hjmvolspec('Vasicek', Sigma_0, CurveDecay, CurveTerm)
- Nearly proportional stationary: VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, MaxSpot)

You can specify more than one factor by concatenating names and parameter sets.

The following table defines the various arguments to hjmvolspec.

Argument Description

Sigma_0 Scalar base volatility over a unit time.
Lambda Scalar decay factor.

himvolspec

Argument	Description
CurveVol	Number of curves (NCURVES)-by1 vector of Vol values at sample points.
CurveDecay	NCURVES-by-1 vector of Decay values at sample points.
CurveProp	NCURVES-by-1 vector of Prop values at sample points.
CurveTerm	NCURVES-by-1 vector of Term sample points.

Note See the volatility specifications formulas below for a description of Vol, Decay, Prop, and Term.

Description

Volspec = hjmvolspec(varargin) computes VolSpec, a structure that specifies the volatility model for hjmtree.
hjmvolspec specifies an HJM forward-rate volatility process. Each factor is specified with one of the functional forms.

Volatility Specification	Formula
Constant	$\sigma(t, T)=$ Sigma_0
Stationary	$\sigma(t, T)=$ Vol(T-t $)=$ Vol(Term $)$
Exponential	$\sigma(t, T)=$ Sigma_0*exp(-Lambda*(T-t))
Vasicek, Hull-White	$\sigma(t, T)=$ Sigma_0*exp(-Decay(T-t))
Proportional	$\sigma(t, T)=\operatorname{Prop}(T-\mathrm{t}) * \max (\operatorname{SpotRate}(\mathrm{t})$, MaxSpot $)$

The volatility process is $\sigma(t, T)$, where t is the observation time and T is the starting time of a forward rate. In a stationary process, the volatility term is $T-t$. Multiple factors can be specified sequentially.
The time values T, t, and Term are in coupon interval units specified by the Compounding input of hjmtimespec. For instance if Compounding = 2 , Term = 1 is a semiannual period (six months).

Examples

Example 1. Volatility is single-factor proportional.

```
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1; 2; 3];
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)
VolSpec =
            FinObj: 'HJMVolSpec'
    FactorModels: {'Proportional'}
            FactorArgs: {{1x3 cell}}
            SigmaShift: 0
            NumFactors: 1
            NumBranch: 2
            PBranch: [0.5000 0.5000]
        Fact2Branch: [-1 1]
```

Example 2. Volatility is two-factor exponential and constant.

```
VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)
VolSpec =
            FinObj: 'HJMVolSpec'
    FactorModels: {'Exponential' 'Constant'}
        FactorArgs: {{1\times2 cell} {1x1 cell}}
        SigmaShift: 0
        NumFactors: 2
            NumBranch: 3
            PBranch: [0.2500 0.2500 0.5000]
        Fact2Branch: [2x3 double]
```


himvolspec

See Also hjmtimespec, hjmtree

Purpose

Calibrate Hull-White tree using caps

Syntax

[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity) [Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity, 'Name1', Value1...)

Arguments

RateSpec	The annualized, continuously compounded rate term structure. For more information, see intenvset.
MarketStrike	NSTRIKES-by-1 vector of market caplet strikes, as a decimal number.
MarketMaturity	NMATS-by-1 vector of market caplet maturity dates.
MarketVolatility	NSTRIKES-by-NMATS matrix of market flat volatilities.
Strike	Scalar representing the rate at which the cap is exercised, as a decimal number.
Settle	Scalar representing the settle date of the cap.
Maturity	Scalar representing the maturity date of the cap.
Reset	(Optional) Scalar representing the frequency of payments per year.
Principal	Default is 1. (Optional) Scalar representing the
notional principal amount. Default is	

hwcalbycap

Basis

ValuationDate

LB

NINST-by-1 vector representing the basis used when annualizing the input forward rate.

- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- $2=$ actual/360
- $3=$ actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=$ actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=$ actual/365 (ISDA)
(Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date.
(Optional) 2-by-1 vector of the lower bounds, defined as [LBSigma; LBAlpha], used in the search algorithm function. Default is LB $=[0 ; 0]$. For more information, see lsqnonlin.

UB

X0

OptimOptions
(Optional) 2-by-1 vector of the upper bounds, defined as [UBSigma; LBAlpha], used in the search algorithm function. Default is UB = [] (unbound). For more information, see lsqnonlin.
(Optional) 2-by-1 vector of the initial values, defined as [Sigma0; Alpha0], used in the search algorithm function. Default is $\mathrm{XO}=[0.5 ; 0.5]$. For more information, see lsqnonlin.
(Optional) Structure with optimization parameters. For more information, see optimset.

Note All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

Description [Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec,

 MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity)[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike,MarketMaturity, MarketVolatility, Strike, Settle, Maturity,'Name1', Value1...)

Use hwcalbycap to estimate the Alpha (mean reversion) and Sigma (volatility) using cap market data and the Hull-White model.
The outputs are:

- Alpha - Scalar representing the mean reversion value obtained from calibrating the cap using caplet market information.
- Sigma - Scalar representing the volatility value obtained from calibrating the cap using market caplet information.
- OptimOut - Structure with optimization results.

Examples For an example, see "Calibrating the Hull-White Model Using Market Data" on page 2-36.

See Also capbyblk, hwcalbyfloor, hwtree, lsqnonlin

Purpose

Calibrate Hull-White tree using floors
Syntax

```
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec,
MarketStrike, MarketMaturity, MarketVolatility, Strike,
Settle, Maturity)
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec,
MarketStrike, MarketMaturity, MarketVolatility, Strike,
Settle, Maturity, 'Name1', Value1...)
```


Arguments

RateSpec	The annualized, continuously compounded rate term structure. For more information, see intenvset.
MarketStrike	NSTRIKES-by-1 vector of market floorlet strikes as a decimal number.
MarketMaturity	NMATS-by-1 vector of market floorlet maturity dates.
MarketVolatility	NSTRIKES-by-NMATS matrix of market flat volatilities.
Strike	Scalar representing the rate at which the floor is exercised, as a decimal number.
Settle	Scalar representing the settle date of the floor.
Maturity	Scalar representing the maturity date of the floor.
Reset	(Optional) Scalar representing the frequency of payments per year.
Default is 1.	

hwcalbyfloor

Principal	(Optional) Scalar representing the notional principal amount. Default is 100.
Basis	NINST-by-1 vector representing the basis used when annualizing the input forward rate.
	- $0=$ actual/actual (default)
	- 1 = 30/360 (SIA)
	- 2 = actual/360
	- 3 = actual/365
	- $4=30 / 360$ (PSA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)
	- $8=$ actual/actual (ISMA)
	- 9 = actual/360 (ISMA)
	- $10=\mathrm{actual} / 365$ (ISMA)
	- $11=30 / 360 \mathrm{E}$ (ISMA)
	- $12=\mathrm{actual} / 365$ (ISDA)
ValuationDate	(Optional) Scalar representing the observation date of the investment horizons. The default is the Settle date.
LB	(Optional) 2-by-1 vector of the lower bounds, defined as [LBSigma; LBAlpha], used in the search algorithm function. Default is $L B=[0 ; 0]$. For more information, see lsqnonlin.

UB

X0

OptimOptions
(Optional) 2-by-1 vector of the upper bounds, defined as [UBSigma; LBAlpha], used in the search algorithm function. Default is UB = [](unbound). For more information, see lsqnonlin.
(Optional) 2-by-1 vector of the initial values, defined as [Sigma0; Alpha0], used in the search algorithm function. Default is $\mathrm{XO}=[0.5 ; 0.5]$. For more information, see lsqnonlin.
(Optional) Structure with optimization parameters. For more information, see optimset.

Note All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

Description

[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity)
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec,MarketStrike, MarketMaturity, MarketVolatility, Strike, Settle, Maturity, 'Name1', Value1...)

Use hwcalbyfloor to estimate the Alpha (mean reversion) and Sigma (volatility) using floor market data and the Hull-White model.
The outputs are:

hwcalbyfloor

- Alpha - Scalar representing the mean reversion value obtained from calibrating the floor using floorlet market information.
- Sigma - Scalar representing the volatility value obtained from calibrating the floor using floorlet market information.
- OptimOut - Structure with optimization results.

Examples For an example, see "Calibrating the Hull-White Model Using Market Data" on page 2-36.

See Also floorbyblk, hwcalbycap, hwtree, lsqnonlin

Purpose

Instrument prices from Hull-White interest-rate tree
Syntax [Price, PriceTree] = hwprice(HWTree, InstSet, Options)
Arguments

Description

HWTree Interest-rate tree structure created by hwtree.
InstSet Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
Options (Optional) Derivatives pricing options structure created with derivset.
[Price, PriceTree] = hwprice(HWTree, InstSet, Options) computes arbitrage-free prices for instruments using an interest-rate tree created with hwtree. All instruments contained in a financial instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.
PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node.

PriceTree. PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.
hwprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

hwprice

Related single-type pricing functions are:

- bondbyhw: Price a bond from a Hull-White tree.
- capbyhw: Price a cap from a Hull-White tree.
- cfbyhw: Price an arbitrary set of cash flows from a Hull-White tree.
- fixedbyhw: Price a fixed-rate note from a Hull-White tree.
- floatbyhw: Price a floating-rate note from a Hull-White tree.
- floorbyhw: Price a floor from a Hull-White tree.
- optbndbyhw: Price a bond option from a Hull-White tree.
- optembndbyhw: Price a bond with embedded option by a Hull-White tree.
- swapbyhw: Price a swap from a Hull-White tree.
- swaptionbyhw: Price a swaption from a Hull-White tree.

Examples

Load the HW tree and instruments from the data file deriv.mat. Price the cap and bond instruments contained in the instrument set.

```
load deriv.mat;
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});
instdisp(HWSubSet)
\begin{tabular}{lllllll} 
Index & Type & CouponRate Settle & Maturity & Period & Name ... \\
1 & Bond & 0.04 & 01-Jan-2004 & 01 -Jan-2007 & 1 & \(4 \%\) bond \\
2 & Bond & 0.04 & 01-Jan-2004 & 01 -Jan-2008 & 1 & \(4 \%\) bond
\end{tabular}
\begin{tabular}{llllll} 
Index & Type Strike Settle & Maturity & CapReset... & Name ... \\
3 & Cap & 0.06 & \(01-J a n-2004\) & \(01-J a n-2008\) & 1
\end{tabular}
[Price, PriceTree] = hwprice(HWTree, HWSubSet);
Price =
```

100.9188
99.3296
0.5837

You can use treeviewer to see the prices of these three instruments along the price tree.

```
treeviewer(PriceTree, HWSubSet)
```


First 4\% Bond (Maturity 2007)

Second 4\% Bond (Maturity 2008)

hwprice

See Also hwsens, hwtree, instadd, intenvprice, intenvsens

Purpose

Instrument prices and sensitivities from HW interest-rate tree
Syntax
[Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet, Options)

Arguments

Description

HWTree	Interest-rate tree structure created by hwtree.
InstSet	Variable containing a collection of NINST instruments. Instruments are categorized by type; each type can
	have different data fields. The stored data field is a row vector or string for each instrument.
Options	(Optional) Derivatives pricing options structure created with derivset.

[Delta, Gamma, Vega, Price] = hwsens(HWTree, InstSet,

Options) computes instrument sensitivities and prices for instruments using an interest-rate tree created with the hwtree function. NINST instruments from a financial instrument variable, InstSet, are priced. hwsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd for information on instrument types.

Delta is an NINST-by- 1 vector of deltas, representing the rate of change of instrument prices with respect to changes in the interest rate. Delta is computed by finite differences in calls to hwtree. See hwtree for information on the observed yield curve.

Gamma is an NINST-by- 1 vector of gammas, representing the rate of change of instrument deltas with respect to the changes in the interest rate. Gamma is computed by finite differences in calls to hwtree.

Vega is an NINST-by- 1 vector of vegas, representing the rate of change of instrument prices with respect to the changes in the volatility $\sigma(t, T)$.

Vega is computed by finite differences in calls to hwtree. See hwvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the interest-rate tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega is calculated based on a 1% shift in the volatility process.

Examples

Load the tree and instruments from a data file. Compute Delta and Gamma for the cap and bond instruments contained in the instrument set.

```
load deriv.mat;
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'});
instdisp(HWSubSet)
\begin{tabular}{llllll} 
Index & Type CouponRate Settle & Maturity & Period & Name ... \\
1 & Bond 0.04 & 01-Jan-2004 & 01-Jan-2007 & 1 & \(4 \%\) \\
2 & Bond 0.04 & 01-Jan-2004 & 01-Jan-2008 & 1 & \(4 \%\) \\
& & Bond
\end{tabular}
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.06 01-Jan-2004 01-Jan-2008 1 6% Cap
[Delta, Gamma] = hwsens(HWTree, HWSubSet)
Delta =
-291.26
-374.64
59.55
```


Gamma =

858.41
1460.88
4843.65

See Also
hwprice, hwtree, hwvolspec, instadd

hwtimespec

Purpose
Syntax TimeSpec = hwtimespec (ValuationDate, Maturity, Compounding)

Arguments

ValuationDate	Scalar date marking the pricing date and first observation in the tree. Specify as a serial date number or date string
Maturity	Number of levels (depth) of the tree. A number of levels (NLEVELS)-by- 1 vector of dates marking the cash flow dates of the tree. Cash flows with these maturities fall on tree nodes. Maturity should be in increasing order.
Compounding	(Optional) Scalar value representing the rate at which the input zero rates were compounded when annualized. Default $=-1$ (continuous compounding). This argument determines the formula for the discount factors:
	Compounding $=1,2,3,4,6,12$
	Disc $=(1+Z / F)^{\wedge}(-T)$, where F is the compounding frequency, Z is the zero rate, and T is the time in periodic units; for example, T $=F$ is 1 year.
	Compounding $=365$
	Disc $=(1+Z / F)^{\wedge}(-T)$, where F is the number of days in the basis year and T is a number of days elapsed computed by basis.
	Compounding $=-1$
	Disc $=\exp \left(-T^{*} Z\right)$, where T is time in years.

hwtimespec

```
Description
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding) sets the number of levels and node times for a Hull-White tree and determines the mapping between dates and time for rate quoting.
TimeSpec is a structure specifying the time layout for hwtree. The state observation dates are [Settle; Maturity(1:end-1)]. Because a forward rate is stored at the last observation, the tree can value cash flows out to Maturity.
```


Examples

```
Specify a four-period tree with annual nodes. Use annual compounding to report rates.
```

```
ValuationDate = 'Jan-1-2004';
```

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
'12-31-2007'];
Compounding = 1;
Compounding = 1;
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
TimeSpec =
FinObj: 'HWTimeSpec'
FinObj: 'HWTimeSpec'
ValuationDate: 731947
ValuationDate: 731947
Maturity: [4x1 double]
Maturity: [4x1 double]
Compounding: 1
Compounding: 1
Basis: 0
Basis: 0
EndMonthRule: 1

```
            EndMonthRule: 1
```

bktree, hwtree, hwvolspec

hwtree

Purpose Construct Hull-White interest-rate tree

```
Syntax HWTree = hwtree(VolSpec, RateSpec, TimeSpec)
```


Arguments

Description

Examples

HWTree = hwtree(VolSpec, RateSpec, TimeSpec) creates a structure containing time and interest-rate information on a recombining tree.

Using the data provided, create a Hull-White volatility specification (VolSpec), rate specification (RateSpec), and tree time layout specification (TimeSpec). Then use these specifications to create a Hull-White tree using hwtree.

```
Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];
```

```
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve);
RateSpec = intenvset('Compounding', Compounding,...
    'ValuationDate', ValuationDate,...
    'StartDates', ValuationDate,...
    'EndDates', VolDates,...
    'Rates', Rates);
HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)
HWTree =
    FinObj: 'HWFwdTree'
    VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
            tObs: [[0 0.9973 1.9973 2.9973]
            dObs: [731947 732312 732677 733042]
            CFlowT: {[4x1 double] [3x1 double] [2x1 double] [3.9973]}
            Probs: {[3x1 double] [3x3 double] [3x5 double]}
    Connect: {[2] [2 3 4] [2 2 3 4 4]}
    FwdTree: {1x4 cell}
```

Use treeviewer to observe the tree you have created.
treeviewer (HWTree)

hwtree

See Also

hwcalbycap, hwcalbyfloor, hwprice, hwtimespec, hwvolspec, intenvset

Purpose

Specify Hull-White interest-rate volatility process
Syntax
Volspec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod)

Arguments

ValuationDate	Scalar value representing the observation date of the investment horizon.
VolDates	Number of points (NPOINTS) -by-1 vector of yield volatility end dates.
VolCurve	NPOINTS-by-1 vector or scalar of yield volatility values in decimal form.
AlphaDates	MPOINTS-by-1 vector of mean reversion end dates.
AlphaCurve	MPOINTS-by-1 vector of positive mean reversion values or scalar in decimal form.
InterpMethod	(Optional) Interpolation method. Default is 'linear'. See interp1 for more information.

Note The number of points in VolCurve and AlphaCurve do not have to be the same.

Description

Volspec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve, InterpMethod) creates a structure specifying the volatility for hwtree.

The volatility process is such that the variance of $r(t+d t)-r(t)$ is defined as follows: $\mathrm{V}=($ Volatility.^2 .* (1-exp(-2*Alpha .* dt))) ./ (2 * Alpha). For more information on using Hull-White interest rate trees, see "Hull-White (HW) and Black-Karasinski (BK) Modeling" on page B-4.

hwvolspec

Examples Using the data provided, create a Hull-White volatility specification (VolSpec).

```
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)
HWVolSpec =
            FinObj: 'HWVolSpec'
        ValuationDate: 731947
            VolDates: [4\times1 double]
            VolCurve: [4\times1 double]
            AlphaCurve: 0.1000
            AlphaDates: 733408
VolInterpMethod: 'linear'
```


See Also

bktree, hwcalbycap, hwcalbyfloor, interp1

Purpose

Syntax

Arguments

Calculate implied volatility using Bjerksund-Stensland 2002 option pricing model

```
Volatility = impvbybjs(RateSpec, StockSpec, Settle,
Maturity, Strike, OptPrice, 'Name1', Value1...)
```

RateSpec	The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset.
StockSpec	Stock specification. See stockspec. Settle
Naturity NINST-by-1 vector of settlement or trade dates. OptSpec NINST-by-1 cell array of strings 'call' or 'put '. Strike NINST-by-1 vector of strike price values. OptPrice NINST-by-1 vector of American option prices from which the implied volatility of the underlying asset are derived..	

Note All optional inputs are specified as matching parameter name/parameter value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/parameter value pairs in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

impvbybjs

Limit	(Optional) 1-by-2 positive vector representing the lower and upper bound of the implied volatility search interval. Default is [0.1 10], or 10% to
1000\% per annum.	

Description

Volatility = impvbybjs(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Bjerksund-Stensland 2002 option pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

Examples

Consider three American call options with exercise prices of $\$ 100$ that expire on July 1, 2008. The underlying stock is trading at $\$ 100$ on January 1, 2008 and pays a continuous dividend yield of 10%. The annualized continuously compounded risk-free rate is 10% per annum and the option prices are $\$ 4.063, \$ 6.77$ and $\$ 9.46$. Using this data, calculate the implied volatility of the stock using the Bjerksund-Stensland 2002 option pricing model:

```
AssetPrice = 100;
Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
DivAmount = 0.1;
Rate = 0.1;
```

Define RateSpec and StockSpec:

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);
```

```
StockSpec = stockspec(NaN, AssetPrice, {'continuous'}, DivAmount);
```

Calculate the implied volatility of the call options:

```
OptSpec = {'call'};
OptionPrice = [4.063;6.77;9.46];
ImpVol = impvbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, OptionPrice)
ImpvVol =
    0.1500
    0.2501
    0.3500
```

The implied volatility is 15% for the first call, and 25% and 35% for the second and third call options.

See Also
optstockbybjs, optstocksensbybjs

impvbyblk

Purpose
Calculate implied volatility using Black option pricing model
Syntax Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...)

Arguments

RateSpec	The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset.
StockSpec	Stock specification. See stockspec.
Settle	NINST-by-1 vector of settlement or trade dates.
Maturity	NINST-by-1 vector of maturity dates.
OptSpec	NINST-by-1 cell array of strings 'call' or 'put'.
Strike	NINST-by-1 vector of strike price values. OptPriceNINST-by-1 vector of European option prices from which the implied volatility of the underlying asset are derived.

Note All optional inputs are specified as matching parameter name/parameter value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/parameter value pairs in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

Limit	(Optional) Positive scalar representing the upper bound of the implied volatility search interval. Default is 10, or 1000% per annum.
Tolerance	(Optional) Positive scalar implied volatility termination tolerance. Default is 1e-6.

Description
\section*{Examples}

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Black option pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

Consider a European call and put options on a futures contract with exercise prices of $\$ 30$ for the put and $\$ 40$ for the call that expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at $\$ 35$. The annualized continuously compounded risk-free rate is 5% per annum. What are the implied volatilities of the stock, if on that date, the call price is $\$ 1.14$ and the put price is $\$ 0.82$

```
AssetPrice = 35;
Strike = [30; 40];
Rates = 0.05;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';
```

Create RateSpec and StockSpec:

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(NaN, AssetPrice);
```

Define the options:

```
OptSpec = {'put';'call'};
```

Calculate the implied volatility of the options:

```
Price = [1.14;0.82];
Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, Price)
```


impvbyblk

```
Volatility =
    0.4052
    0.3021
```

The implied volatility would be 41% and 30%.
See Also
optstockbyblk, optstocksensbyblk

Purpose

Calculate implied volatility using Black-Scholes option pricing model
Syntax
Volatility = impvbybls(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...)

Arguments

RateSpec	The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset.
StockSpec	Stock specification. See stockspec.
Settle	NINST-by-1 vector of settlement or trade dates.
Maturity	NINST-by-1 vector of maturity dates.
OptSpec	NINST-by-1 cell array of strings 'call' or 'put '.
Strike	NINST-by-1 vector of strike price values.
OptPrice	NINST-by-1 vector of European option prices from which the implied volatility of the underlying asset are derived.

Note All optional inputs are specified as matching parameter name/parameter value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/parameter value pairs in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

Limit	(Optional) Positive scalar representing the upper bound of the implied volatility search interval. Default is 10, or 1000\% per annum.
Tolerance	(Optional) Positive scalar implied volatility termination tolerance. Default is 1e-6.

impvbybls

Description

Examples

Volatility = impvbybls(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Black-Scholes option pricing model.

Volatility is a NINST-by-1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

Consider a European call and put options with an exercise price of $\$ 40$ that expires on June 1, 2008. The underlying stock is trading at $\$ 45$ on January 1, 2008 and the risk-free rate is 5% per annum. The option price is $\$ 7.10$ for the call and $\$ 2.85$ for the put. Using this data, calculate the implied volatility of the European call and put using the Black-Scholes option pricing model:

```
AssetPrice = 45;
Settlement = 'Jan-01-2008';
Maturity = 'June-01-2008';
Strike = 40;
Rates = 0.05;
OptionPrice = [7.10; 2.85];
OptSpec = {'call';'put'};
```

Define RateSpec and StockSpec :

```
RateSpec = intenvset('ValuationDate', Settlement, 'StartDates', Settlement,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);
StockSpec = stockspec(NaN, AssetPrice);
```

Calculate the implied volatility of the options:

```
ImpvVol = impvbybls(RateSpec, StockSpec, Settlement, Maturity, OptSpec,...
Strike, OptionPrice)
ImpvVol =
```


0.3175

0.4878

The implied volatility is 31.75% for the call and 48.78% for the put.
See Also optstockbybls, optstocksensbybls

impvbyrgw

Purpose

Syntax

Arguments

Calculate implied volatility using Roll-Geske-Whaley option pricing model for American call option

Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...)

RateSpec	The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset.
StockSpec	Stock specification. See stockspec.
Settle	NINST-by-1 vector of settlement or trade dates.
Maturity	NINST-by-1 vector of maturity dates.
Strike	NINST-by-1 vector of strike price values.
OptPrice	NINST-by-1 vector of American call option prices from which the implied volatility of the underlying asset are derived.

Note All optional inputs are specified as matching parameter name/parameter value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/parameter value pairs in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

Limit	(Optional) Positive scalar representing the upper bound of the implied volatility search interval. Default is 10, or 1000% per annum.
Tolerance	(Optional) Positive scalar implied volatility termination tolerance. Default is 1e-6.

Description

Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, OptPrice, 'Name1', Value1...) computes implied volatility using the Roll-Geske-Whaley option pricing model.

Volatility is a NINST-by- 1 vector of expected implied volatility values. If no solution is found, a NaN is returned.

Examples Assume that on July 1, 2008 a stock is trading at $\$ 13$ and pays a single cash dividend of $\$ 0.25$ on November 1, 2008. The American call option with a strike price of $\$ 15$ expires on July 1, 2009 and is trading at $\$ 1.346$. The annualized continuously compounded risk-free rate is 5% per annum. Calculate the implied volatility of the stock using the Roll-Geske-Whaley option pricing model:

```
AssetPrice = 13;
Strike = 15;
Rates = 0.05;
Settle = 'July-01-08';
Maturity = 'July-01-09';
```

Define StockSpec and RateSpec:

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
    'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(NaN, AssetPrice, {'cash'}, 0.25, {'Nov 1,2008'});
```

Calculate the implied volatility of the option:

```
Price = [1.346];
Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, Price)
Volatility =
    0.3539
```

See Also optstockbyrgw, optstocksensbyrgw

instadd

Purpose
Syntax

Add types to instrument collection

Arbitrary cash flow instrument. (See also instcf.)
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)

Asian instrument. (See also instasian.) InstSet = instadd('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Barrier instrument. (See also instbarrier.)
InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierType, Barrier, Rebate)

Bond instrument. (See also instbond.) InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

Bond with embedded option instrument. (See also instoptembnd.) InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period', Period, 'Basis', Basis, 'EndMonthRule', EndMonthRule,'Face',Face, 'IssueDate', IssueDate, 'FirstCouponDate', FirstCouponDate, 'LastCouponDate', LastCouponDate, 'StartDate', StartDate)

Bond option. (See also instoptbnd.)
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

Cap instrument. (See also instcap.)
InstSet = instadd('Cap', Strike, Settle, Maturity, Reset, Basis, Principal)
Compound instrument. (See also instcompound.) InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt,COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

Fixed-rate note instrument. (See also instfixed.) InstSet = instadd('Fixed', CouponRate, Settle, Maturity, Reset,

```
Basis, Principal, EndMonthRule)
Floating-rate note instrument. (See also instfloat.)
InstSet = instadd('Float', Spread, Settle, Maturity, Reset, Basis,
Principal, EndMonthRule)
Floor instrument. (See also instfloor.)
InstSet = instadd('Floor', Strike, Settle, Maturity, Reset, Basis,
Principal)
Lookback instrument. (See also instlookback.)
InstSet = instadd('Lookback', OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt)
Stock option instrument. (See also instoptstock.)
InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity,
AmericanOpt)
Swap instrument. (See also instswap.)
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType, EndMonthRule)
Swaption instrument. (See also instswaption.)
InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates,
Spread, Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)
To add instruments to an existing collection:
InstSet = instadd(InstSetOld, TypeString, Data1, Data2, ...)
```


Arguments

InstSet0ld Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.

For more information on instrument data parameters, see the reference entries for individual instrument types. For example, see instcap for additional information on the cap instrument.

instadd

Description
instadd stores instruments of types 'Asian', 'Barrier', 'Bond', 'Cap', 'CashFlow', 'Compound', 'Fixed', 'Float', 'Floor', 'Lookback', 'OptBond', 'OptStock', 'Swap', or 'Swaption'. This toolbox provides pricing and sensitivity routines for these instruments.

InstSet is an instrument set variable containing the new input data.

Examples Create a portfolio with two cap instruments and a 4% bond.

```
Strike = [0.06; 0.07];
CouponRate = 0.04;
Settle = '06-Feb-2000';
Maturity = '15-Jan-2003';
InstSet = instadd('Cap', Strike, Settle, Maturity);
InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity);
instdisp(InstSet)
\begin{tabular}{llllllll} 
Index & Type Strike Settle & Maturity & CapReset Basis Principal \\
1 & Cap & 0.06 & \(06-\) Feb-2000 & 15-Jan-2003 & NaN & NaN & NaN \\
2 & Cap & 0.07 & \(06-\) Feb-2000 & 15-Jan-2003 & NaN & NaN & NaN
\end{tabular}
Index Type CouponRate Settle Maturity ...
```


See Also

instasian, instbarrier, instbond, instcap, instcf, instcompound, instfixed, instfloat, instfloor, instlookback, instoptbnd, instoptembnd, instoptstock, instswap, instswaption

```
Purpose Add new instruments to instrument collection
Syntax InstSet = instaddfield('FieldName', FieldList, 'Data',
DataList, 'Type', TypeString)
InstSetNew = instaddfield(InstSet, 'FieldName', FieldList,
'Data', DataList,'Type',TypeString)
```


Arguments

FieldList	String or number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field.
	FieldList cannot be named with the reserved name Type or Index.
DataList	Number of instruments (NINST)-by-M array or NFIELDS-by-1 cell array of data contents for each field. Each row in a data array corresponds to a separate instrument. Single rows are copied to apply to all instruments to be worked on. The number of columns is arbitrary, and data is padded along columns.
ClassList	(Optional) String or NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how DataList is parsed. Valid strings are 'dble', 'date', and ' char'. The
	'FieldClass' ClassList pair is always optional. ClassList is inferred from existing field names or from the data if not entered.
TypeString	String specifying the type of instrument added.
	Instruments of different types can have different
Fieldname collections.	

instaddfield

Description

Use instaddfield to create your own types of instruments or to append new instruments to an existing collection. Argument value pairs can be entered in any order.

```
InstSet = instaddfield('FieldName', FieldList, 'Data',
DataList, 'Type', TypeString)
InstSet = instaddfield('FieldName', FieldList,
'FieldClass', ClassList, 'Data', DataList, 'Type',
TypeString) create an instrument variable.
InstSetNew = instaddfield(InstSet, 'FieldName', FieldList,
'Data', DataList,'Type',TypeString) adds instruments to an
existing instrument set, InstSet. The output InstSetNew is a new
instrument set containing the input data.
```


Examples
 Build a portfolio around July options.

Strike	Call	Put
95	12.2	2.9
100	9.2	4.9
105	6.8	7.4
Strike $=(95: 5: 105)^{\prime}$		
Callp	[12.2	.2;

Enter three call options with data fields Strike, Price, and Opt.

```
InstSet = instaddfield('Type','Option','FieldName',...
{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'});
instdisp(InstSet)
\begin{tabular}{lllll} 
Index & Type & Strike & Price & Opt \\
1 & Option & 95 & 12.2 & Call \\
2 & Option & 100 & 9.2 & Call \\
3 & Option & 105 & 6.8 & Call
\end{tabular}
```

Add a futures contract and set the input parsing class.

```
InstSet = instaddfield(InstSet,'Type','Futures',...
'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},...
'Data' ,{'01-Jul-99',104.4 });
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
```

Add a put option.

```
FN = instfields(InstSet,'Type','Option')
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'});
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
```

Make a placeholder for another put.

```
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put')
instdisp(InstSet)
```


instaddfield

Index	Type	Strike	Price	Opt
1	Option	95	12.2	Call
2	Option	100	9.2	Call
3	Option	105	6.8	Call
Index	Type	Delivery	F	
4	Futures	$01-$ Jul-1999	104.4	
Index	Type	Strike	Price	Opt
5	Option	105	7.4	Put
6	Option	NaN	NaN	Put

Add a cash instrument.

```
InstSet = instaddfield(InstSet, 'Type', 'TBill',...
'FieldName','Price','Data',99)
instdisp(InstSet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put
Index Type Price
7 TBill 99
```


Purpose Construct Asian option

Syntax InstSet = instasian(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) [FieldList, ClassList, TypeString] = instasian

Arguments

InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
OptSpec	NINST-by-1 list of string values 'Call' or 'Put'.
Strike	NINST-by-1 vector of strike price values. Each row is the schedule for one option.
Settle	NINST-by-1 vector of Settle dates.

instasian

AmericanOpt	(Optional) If AmericanOpt $=0$, NaN, or is unspecified, the option is a European option. If AmericanOpt $=1$, the option is an American option.
AvgType	(Optional) String $=$ 'arithmetic' for arithmetic average (default) or 'geometric' for geometric average.
AvgPrice	(Optional) Scalar representing the average price of the underlying asset at Settle. This argument is used when AvgDate < Settle. Default is the current stock price.
AvgDate	(Optional) Scalar representing the date on which the averaging period begins. Default = Settle.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Description

InstSet = instasian(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate) specifies an Asian option.
[FieldList, ClassList, TypeString] = instasian displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.
ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For an Asian option instrument, TypeString = 'Asian'.

See Also instadd, instdisp, instget

instbarrier

Purpose Construct barrier option
Syntax $\quad \begin{aligned} & \text { InstSet = instbarrier(InstSet, OptSpec, Strike, Settle, } \\ & \text { ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate) } \\ & \\ & \\ & \text { [FieldList, ClassList, TypeString] = instbarrier }\end{aligned}$

Arguments

InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
OptSpec	NINST-by-1 list of string values 'Call' or 'Put '.
Strike	NINST-by-1 vector of strike price values. Each row is the schedule for one option.
ExerciseDates	NINST-by-1 vector of Settle dates.
	For a European option (AmericanOpt = 0): is the schedule for one option. For a European
	option, there is only one exercise date, the option expiry date.
	For an American option (AmericanOpt = 1):
NINST-by-2 vector of exercise date boundaries.	
For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the	
option can be exercised between the valuation	
date of the stock tree and the single listed	
exercise date.	

AmericanOpt	If AmericanOpt $=0$, NaN, or is unspecified, the option is a European option. If AmericanOpt $=1$, the option is an American option.
BarrierSpec	List of string values: 'UI' $:$ Up Knock In
	'UO': Up Knock Out
	'DI': Down Knock In
Barrier	'DO': Down Knock Out
Rebate	Vector of barrier values.
	(Optional) Vector of rebate values.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Description

See Also

InstSet = instbarrier(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate) specifies a barrier option.
[FieldList, ClassList, TypeString] = instbarrier displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a barrier option instrument, TypeString = 'Barrier'.

instbond

Purpose Construct bond instrument

```
Syntax InstSet = instbond(InstSet, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)
[FieldList, ClassList, TypeString] = instbond
```


Arguments

InstSet	Instrument variable. This argument is specified only when adding bond instruments to an existing instrument set. See instget for more information on the InstSet variable.
CouponRate	Decimal number indicating the annual percentage rate used to determine the coupons payable on a bond.
Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
	neriod \quad(Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.	

Basis (Optional) Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual/360
- $3=$ actual $/ 365$
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=$ actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

EndMonthRule

IssueDate
(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. $0=$ ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
(Optional) Date when a bond was issued.

instbond

$\left.\left.\begin{array}{ll}\text { FirstCouponDate } & \begin{array}{l}\text { (Optional) Date when a bond makes its first } \\ \text { coupon payment. When FirstCouponDate } \\ \text { and LastCouponDate are both specified, }\end{array} \\ \text { FirstCouponDate takes precedence in } \\ \text { determining the coupon payment structure. }\end{array}\right\} \begin{array}{l}\text { (Optional) Last coupon date of a bond prior } \\ \text { to the maturity date. In the absence of } \\ \text { a specified FirstCouponDate, a specified } \\ \text { LastCouponDate determines the coupon } \\ \text { structure of the bond. The coupon structure } \\ \text { of a bond is truncated at the LastCouponDate } \\ \text { regardless of where it falls and is followed } \\ \text { only by the bond's maturity cash flow date. }\end{array}\right\}$

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Description

InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face) creates a new instrument set containing bond instruments or adds bond instruments to a existing instrument set.
[FieldList, ClassList, TypeString] = instbond displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a bond instrument, TypeString = 'Bond'.

See Also
hjmprice, instaddfield, instdisp, instget, intenvprice

instcap

Purpose Construct cap instrument

```
Syntax InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset,
Basis, Principal)
[FieldList, ClassList, TypeString] = instcap
```


Arguments

InstSet	Instrument variable. This argument is specified only when adding cap instruments to an existing instrument set. See instget for more information on the InstSet variable.
Strike	Rate at which the cap is exercised, as a decimal number.
Settle	Settlement date. Serial date number representing the settlement date of the cap.
Maturity	Serial date number representing the maturity date of the cap.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default = 1.
Basis	(Optional) Day-count basis of the instrument. A
	vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (PSA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)

- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default $=100$.

Description

See Also

InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis, Principal) creates a new instrument set containing cap instruments or adds cap instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instcap displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a cap instrument, TypeString = 'Cap'.
hjmprice, instaddfield, instbond, instdisp, instfloor, instswap, intenvprice

instcf

Purpose
Construct cash flow instrument

```
Syntax InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle,
Basis)
[FieldList, ClassList, TypeString] = instcf
```


Arguments

InstSet	Instrument variable. This argument is specified only when adding cash flow instruments to an existing instrument set. See instget for more information on the InstSet variable.
CFlowAmounts	Number of instruments (NINST) by maximum number of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the row is padded with NaNs.
CFlowDates	NINST-by-MOSTCFS matrix of cash flow dates. Each entry contains the date of the corresponding cash flow in CFlowAmounts.
Settle	Settlement date on which the cash flows are priced. (Optional) Day-count basis of the instrument. A
	vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
- $3=$ actual/365	
- $4=30 / 360$ (PSA)	

- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- 10 = actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Only one data argument is required to create an instrument. Other arguments can be omitted or passed as empty matrices []. Dates can be input as serial date numbers or date strings.

Description

See Also

InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis) creates a new instrument set from data arrays or adds instruments of type CashFlow to an instrument set.
[FieldList, ClassList, TypeString] = instcf lists field metadata for an instrument of type CashFlow.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.
ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString specifies the type of instrument added; for example, TypeString = 'CashFlow'.
instadd, instdisp, instget, intenvprice

instcompound

Purpose
Construct compound option

Arguments

InstSet	Variable containing a collection of instruments Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
UOptSpec	String = 'Call ' or 'Put'.
UStrike	1-by-1 vector of strike price values.
USettle	1-by-1 vector of Settle dates.
UExerciseDates	For a European option (UAmericanOpt $=0$): 1-by-1 vector of exercise dates. For a European option, there is only one exercise date, the option expiry date. For an American option (UAmericanOpt = 1): 1-by-2 vector of exercise date boundaries. The option can be exercised on any tree date. If only one non-NaN date is listed, or if ExerciseDates is 1 -by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.
UAmericanOpt	If UAmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European option. If UAmericanOpt $=1$, the option is an American option.

COptSpec	NINST-by-1 list of string values 'Call' or 'Put ' of the compound option.
CStrike	NINST-by-1 vector of strike price values. Each row is the schedule for one option.
CExettle	1-by-1 vector containing the settlement or trade date.
	For a European option (CAmericanOpt = 0):
	NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the
option expiry date.	

Description InstSet = instcompound(InstSet, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt) specifies a compound option.
[FieldList, ClassList, TypeString] = instcompound displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.

instcompound

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a compound option instrument, TypeString = 'Compound'.

See Also
instadd, instdisp, instget

```
Purpose
    Complement of instrument set by matching conditions
Syntax ISubSet = instdelete(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)
```


Arguments

InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
FieldList	String or number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field to match with data values.
DataList	Number of values (NVALUES)-by-M array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row lists a data row value to search for in the corresponding FieldList. The number of columns is arbitrary and matching will ignore trailing
IndexSet	NaNs or spaces. (Optional) Number of instruments (NINST)-by-1 vector
restricting positions of instruments to check for	
matches. The default is all indices available in the	
instrument variable.	

instdelete

Note Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all.

Description
The output argument ISubSet contains instruments not matching the input criteria. Instruments are deleted from ISubSet if all the Field, Index, and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName. See instfind for more examples on matching criteria.

Examples

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat. The variable contains three types of instruments: Option, Futures, and TBill.

Create a new variable, ISet, with all options deleted.

```
ISet = instdelete(ExampleInst, 'Type','Option');
instdisp(ISet)
Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000
Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6
```


See Also

instaddfield, instfind, instget, instselect

instdisp

Purpose	Display instruments
Syntax	CharTable $=$ instdisp(InstSet)

Arguments

$$
\begin{array}{ll}
\text { InstSet } & \begin{array}{l}
\text { Variable containing a collection of instruments. See } \\
\text { instaddfield for examples on constructing the } \\
\text { variable. }
\end{array}
\end{array}
$$

Description
 Examples
 Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.

Index	Type	Strike	Price	Opt	Con	tracts
1	Option	95	12.2	Call		0
2	Option		9.2	Call		0
3	Option	105	6.8	Call		
Index	Type	Delivery	ery	F		Contracts
4	Futures	01-Jul	1-1999		104.4	-1000
Index	Type	Strike	Price	Opt	Con	tracts
5	Option	105	7.4	Put	-100	

| 6 | Option 95 | 2.9 Put | 0 |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| Index | Type Price | Maturity | Contracts |
| 7 | TBill 99 | $01-$ Jul-1999 | 6 |

See Also
datestr in Financial Toolbox documentation num2str in MATLAB Reference documentation instaddfield, instget

Purpose List field names
Syntax FieldList = instfields(InstSet, 'Type', TypeList)
Arguments

Description

FieldList = instfields(InstSet, 'Type', TypeList) retrieves the list of fields stored in an instrument variable.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field corresponding to the listed types.

Examples

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples;
```

instdisp(ExampleInst)

Index	Type	Strike	Price	Opt	Contracts
1	Option	95	12.2	Call	0
2	Option	100	9.2	Call	0
3	Option	105	6.8	Call	1000
Index	Type	Delivery	F	Contracts	
4	Futures	01 -Jul-1999	104.4	-1000	

Index	Type	Strike	Price Opt	Contracts
5	Option 105	7.4 Put	-1000	
6	Option 95	2.9 Put	0	
Index	Type Price Maturity	Contracts		
7	TBill 99	$01-J u l-1999$	6	

Get the fields listed for type 'Option'.

```
[FieldList, ClassList] = instfields(ExampleInst, 'Type',...
'Option')
FieldList =
    'Strike'
    'Price'
    'Opt'
    'Contracts'
ClassList =
    'dble'
    'dble'
    'char'
    'dble'
```

Get the fields listed for types 'Option' and 'TBill'.

```
FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'})
FieldList =
    'Strike'
    'Opt'
    'Price'
    'Maturity'
    'Contracts'
```

Get all the fields listed in any type in the variable.

```
FieldList = instfields(ExampleInst)
FieldList =
    'Delivery'
'F'
'Strike'
'Opt'
'Price'
'Maturity'
'Contracts'
```

Purpose Search instruments for matching conditions
Syntax IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', DataList,'Index', IndexSet, 'Type', TypeList)

Arguments

InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
FieldList	String or number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field to match with data values.
DataList	Number of values (NVALUES)-by-M array or NFIELDS-by-1 cell array of acceptable data values for each field. Each row lists a data row value to search for in the corresponding FieldList. The number of columns is arbitrary, and matching will ignore trailing NaNs or spaces.
IndexSet	(Optional) Number of instruments (NINST)-by-1 vector restricting positions of instruments to check for matches. The default is all indices available in
the instrument variable.	

Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all.

instfind

Description

Examples

IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', DataList,'Index', IndexSet, 'Type', TypeList) returns indices of instruments matching Type, Field, or Index values.

IndexMatch is an NINST-by-1 vector of positions of instruments matching the input criteria. Instruments are returned in IndexMatch if all the Field, Index, and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName.

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.

Make a vector, Opt95, containing the indexes within ExampleInst of the options struck at 95 .

```
Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data','95')
Opt95 =
```

Locate the futures and Treasury bill instruments within ExampleInst.

```
Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})
Types =
```

 4
 7

See Also

instaddfield, instget, instgetcell, instselect

Purpose
Construct fixed-rate instrument

Syntax
InstSet = instfixed(InstSet, CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) [FieldList, ClassList, TypeString] = instfixed

Arguments

InstSet	Instrument variable. This argument is specified only when adding fixed-rate note instruments to an existing instrument set. See instget for more information on the InstSet variable.
CouponRate	Decimal annual rate. Settle
Settlement date. Date string or serial date number representing the settlement date of the fixed-rate note.	
Maturity	Date string or serial date number representing the maturity date of the fixed-rate note.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default = 1.
Basis	(Optional) Day-count basis of the instrument. A
	vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (PSA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)	

- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default $=100$.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default $=1$.

Data arguments are number of instruments (NINST)-by- 1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Description

InstSet = instfixed(InstSet, CouponRate, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) creates a new instrument set containing fixed-rate instruments or adds fixed-rate instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfixed displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a fixed-rate instrument, TypeString = 'Fixed'.

See Also
hjmprice, instaddfield, instbond, instcap, instdisp, instswap, intenvprice

Purpose Construct floating-rate instrument

```
Syntax InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule)
[FieldList, ClassList, TypeString] = instfloat
```


Arguments

InstSet	Instrument variable. This argument is specified only when adding floating-rate note instruments to an existing instrument set. See instget for more information on the InstSet variable.
Spread	Number of basis points over the reference rate. Settle Settlement date. Date string or serial date number representing the settlement date of the floating-rate note.
Maturity	Date string or serial date number representing the maturity date of the floating-rate note.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default = 1.
Basis	(Optional) Day-count basis of the instrument. A
	vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (PSA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)

instfloat

- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=$ actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default $=100$.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default $=1$.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Description

InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis, Principal, EndMonthRule) creates a new instrument set containing floating-rate instruments or adds floating-rate instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfloat displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a floating-rate instrument, TypeString = 'Float'.

See Also
hjmprice, instaddfield, instbond, instcap, instdisp, instswap, intenvprice

Purpose
Construct floor instrument

```
Syntax InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset,
Basis, Principal)
[FieldList, ClassList, TypeString] = instfloor
```


Arguments

InstSet	Instrument variable. This argument is specified only when adding floor instruments to an existing instrument set. See instget for more information on the InstSet variable.
Strike	Rate at which the floor is exercised, as a decimal number.
Settle	Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity.
Maturity	Maturity date. A vector of serial date numbers or date strings.
Reset	(Optional) NINST-by-1 vector representing the frequency of payments per year. Default = 1.
Basis	(Optional) Day-count basis of the instrument. A
	vector of integers.
	- $0=$ actual/actual (default)
	- $1=30 / 360$ (SIA)
	- $2=$ actual/360
	- $3=$ actual/365
	- $4=30 / 360$ (PSA)
	- $5=30 / 360$ (ISDA)
	- $6=30 / 360$ (European)
	- $7=$ actual/365 (Japanese)

- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) The notional principal amount. Default $=100$.

Description

InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis, Principal) creates a new instrument set containing floor instruments or adds floor instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instfloor displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a floor instrument, TypeString = 'Floor'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instswap, intenvprice

instget

Purpose Data from instrument variable

Syntax [Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList)

Arguments

InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
FieldList	(Optional) String or number of fields (NFIELDS)-by-1 cell array of strings listing the name of each data field to match with data values. FieldList entries can also be either 'Type' or ' Index'; these return type strings and index numbers respectively. The default is all fields available for the returned set of instruments.
IndexSet	(Optional) Number of instruments (NINST)-by-1 vector of positions of instruments to work on. If TypeList is also entered, instruments referenced must be one of TypeList types and contained in
TypeList	IndexSet. The default is all indices available in the instrument variable. (Optional) String or number of types (NTYPES)-by-1 cell array of strings restricting instruments to match
one of TypeList types. The default is all types in the	
instrument variable.	

Argument value pairs can be entered in any order. The InstSet variable must be the first argument.

Description

[Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList) retrieves data arrays from an instrument variable.

Data_1 is an NINST-by-M array of data contents for the first field in FieldList. Each row corresponds to a separate instrument in IndexSet. Unavailable data is returned as NaN or as spaces.

Data_n is an NINST-by-M array of data contents for the last field in FieldList.

Examples

Retrieve the instrument set ExampleInst from the data file. InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6
```

Extract the price from all instruments.

```
P = instget(ExampleInst,'FieldName','Price')
P =
```


instget

12.2000
9.2000
6.8000
NaN
7.4000
2.9000
99.0000

Get all the prices and the number of contracts held.

```
[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'})
P =
    12.2000
            9.2000
            6.8000
            Nan
            7.4000
            2.9000
    99.0000
C =
            0
            0
    1000
    -1000
    -1000
        0
        6
```

Compute a value V. Create a new variable ISet that appends V to ExampleInst.

```
V = P.*C
```

```
ISet = instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',...
V);
instdisp(ISet)
\begin{tabular}{lllrlrr} 
Index & Type & Strike & Price & Opt & Contracts & Value \\
1 & Option & 95 & 12.2 & Call & 0 & 0 \\
2 & Option 100 & 9.2 & Call & 0 & 0 \\
3 & Option 105 & 6.8 Call & 1000 & 6800
\end{tabular}
\begin{tabular}{llllll} 
Index & Type & Delivery & F & \multicolumn{2}{c}{ Contracts Value } \\
4 & Futures & 01-Jul-1999 & \(104.4-1000\) & NaN
\end{tabular}
Index Type Strike Price Opt Contracts Value
5 Option \(105 \quad 7.4\) Put -1000 -7400
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts Value
\(7 \quad\) TBill \(99 \quad\) 01-Jul-1999 605
```

Look at only the instruments that have nonzero Contracts.

```
Ind = find(C ~= 0)
Ind =
    3
    4
    5
    7
```

Get the Type and Opt parameters from those instruments. (Only options have a stored 'Opt ' field.)

```
[T,0] = instget(ExampleInst, 'Index', Ind, 'FieldName',...
{'Type', 'Opt'})
T =
```


instget

Option
Futures
Option
TBill
$0=$
Call
Put

Create a string report of holdings Type, Opt, and Value.
rstring $=[T, 0$, num2str(V(Ind)) $]$
rstring =
Option Call 6800
Futures NaN
Option Put -7400
TBill 594
See Also instaddfield, instdisp, instgetcell

Purpose Data and context from instrument variable

Syntax

```
[DataList, FieldList, ClassList] =
instgetcell(InstSet, 'FieldName', FieldList, 'Index',
IndexSet, 'Type', TypeList)
```


Arguments

Argument value pairs can be entered in any order. The InstSet variable must be the first argument.

Description

Examples

[DataList, FieldList, ClassList] = instgetcell(InstSet, 'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList) retrieves data and context from an instrument variable.
DataList is an NFIELDS-by-1 cell array of data contents for each field. Each cell is an NINST-by-M array, where each row corresponds to a separate instrument in IndexSet. Any data which is not available is returned as NaN or as spaces.

FieldList is an NFIELDS-by-1 cell array of strings listing the name of each field in DataList.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

IndexSet is an NINST-by-1 vector of positions of instruments returned in DataList.

TypeSet is an NINST-by-1 cell array of strings listing the type of each instrument row returned in DataList.

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.

```
load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
```

6	Option 95	2.9 Put	0
Index	Type Price	Maturity	Contracts
7	TBill 99	$01-$ Jul-1999	6

Get the prices and contracts from all instruments.

```
FieldList = {'Price'; 'Contracts'}
DataList = instgetcell(ExampleInst, 'FieldName', FieldList )
P = DataList{1}
C = DataList{2}
P =
    12.2000
        9.2000
        6.8000
            NaN
        7.4000
        2.9000
        99.0000
C =
            0
            0
        1 0 0 0
        -1000
        -1000
            0
            6
```

Get all the option data: Strike, Price, Opt, Contracts.

```
[DataList, FieldList, ClassList] = instgetcell(ExampleInst,...
'Type','Option')
```


instgetcell

```
DataList =
    [5x1 double]
    [5x1 double]
    [5x4 char ]
    [5x1 double]
FieldList =
    'Strike'
    'Price'
    'Opt'
    'Contracts'
ClassList =
    'dble'
    'dble'
    'char'
    'dble'
```

Look at the data as a comma-separated list. Type help lists for more information on cell array lists.

DataList $\{:\}$
ans =
95
100
105
105
95
ans =
12.2100

```
    9.2000
        6.8000
        7.3900
        2.9000
    ans =
    Call
    Call
    Call
        Put
        Put
    ans =
        0
        0
        100
        -100
        0
```

See Also
instaddfield, instdisp, instget

instlength

Purpose Count instruments

Syntax NInst = instlength(InstSet)

Arguments

Description
 NInst = instlength(InstSet) computes NInst, the number of instruments contained in the variable, InstSet.

See Also instdisp, instfields, insttypes

Purpose Syntax Arguments

Construct lookback option

```
InstSet = instlookback(InstSet, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt)
[FieldList, ClassList, TypeString] = instlookback
```

InstSet	Variable containing a collection of instruments. Instruments are classified by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
OptSpec	NINST-by-1 list of string values 'Call' or 'Put'.
Strike	NINST-by- 1 vector of strike price values. Each row is the schedule for one option.
Settle	NINST-by-1 vector of Settle dates.
ExerciseDates	For a European option (American0pt $=0$):
	NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.
	For an American option (AmericanOpt =
	NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any tree date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the valuation date of the stock tree and the single listed exercise date.
AmericanOpt	(Optional) If AmericanOpt $=0, \mathrm{NaN}$, or is unspecified, the option is a European option. If

instlookback

AmericanOpt = 1, the option is an American option.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Description
InstSet = instlookback(InstSet, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) specifies a lookback option.
[FieldList, ClassList, TypeString] = instlookback displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.
TypeString is a string specifying the type of instrument added. For a lookback option instrument, TypeString = 'Lookback'.

See Also instadd, instdisp, instget

Purpose Construct bond option

\author{
Syntax
 ```
InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
 ExerciseDates)
 InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
 ExerciseDates, AmericanOpt)
 [FieldList, ClassList, TypeString] = instoptbnd

```
}

\section*{Arguments}
\begin{tabular}{ll} 
InstSet & \begin{tabular}{l} 
Variable containing a collection of instruments. \\
Instruments are classified by type; each type can \\
have different data fields. The stored data field \\
is a row vector or string for each instrument.
\end{tabular} \\
BondIndex & \begin{tabular}{l} 
Number of instruments (NINST)-by-1 vector of \\
indices pointing to underlying instruments of \\
Type 'Bond ' which are also stored in InstSet. \\
See instbond for information on specifying the \\
bond data.
\end{tabular} \\
OptSpec & NINST-by-1 list of string values 'Call' or 'Put '.
\end{tabular}

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.

\section*{instoptbnd}
\begin{tabular}{ll} 
Strike & \begin{tabular}{l} 
European option: NINST-by-1 vector of strike \\
price values. \\
Bermuda option: NINST by number of strikes \\
(NSTRIKES) matrix of strike price values.
\end{tabular} \\
Each row is the schedule for one option. If \\
an option has fewer than NSTRIKES exercise \\
opportunities, the end of the row is padded with \\
NaNs. \\
For an American option: \\
ExerciseDates & \begin{tabular}{l} 
NINST-by-1 vector of strike price values for each \\
option.
\end{tabular} \\
\(\quad\)\begin{tabular}{l} 
NINST-by-1 (European option) or \\
NINST-by-NSTRIKES (Bermuda option) \\
matrix of exercise dates. Each row is the \\
schedule for one option. For a European option, \\
there is only one exercise date, the option expiry \\
date.
\end{tabular} \\
\begin{tabular}{l} 
For an American option:
\end{tabular} \\
\begin{tabular}{l} 
NINST-by-2 vector of exercise date boundaries.
\end{tabular} \\
\begin{tabular}{l} 
For each instrument, the option can be exercised \\
on any coupon date between or including the pair \\
of dates on that row. If only one non-NaN date
\end{tabular} \\
is listed, or if ExerciseDates is NINST-by-1, the \\
option can be exercised between the underlying \\
bond Settle and the single listed exercise date.
\end{tabular}

Data arguments are NINST-by- 1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\footnotetext{
Description

See Also
hjmprice, instadd, instdisp, instget
}

\section*{instoptembnd}

Purpose
Constructor for 'Type ', 'OptEmBond' bond with embedded option
```

Syntax
InstSet = instoptembnd (CouponRate, Settle, Maturity,... OptSpec, Strike, ExerciseDates, 'AmericanOpt',... AmericanOpt, 'Period', Period, 'Basis', Basis,... 'EndMonthRule', EndMonthRule,'Face', Face, 'IssueDate',... IssueDate, 'FirstCouponDate', FirstCouponDate,...
'LastCouponDate', LastCouponDate,'StartDate',StartDate)
InstSet = instoptembnd(InstSetOld, CouponRate,...)
[FieldList, ClassList, TypeString] = instoptembnd

```

\section*{Arguments}
\begin{tabular}{ll} 
CouponRate & NINST-by-1 vector of decimal annual rate. \\
Settle & NINST-by-1 vector of settlement dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 vector of string values 'Call' or \\
'Put'. \\
For a European or Bermuda option \\
Strike & \begin{tabular}{l} 
NINST-by-NSTRIKES matrix of strike price values. \\
Each row is the schedule for one option. If \\
an option has fewer than NSTRIKES exercise \\
opportunities, the end of the row is padded with
\end{tabular} \\
NaN's.
\end{tabular}
\begin{tabular}{ll} 
For an American option \\
Strike & NINST-by-1 vector of strike price values for each \\
option.
\end{tabular}

\section*{instoptembnd}
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

EndMonthRule (Optional) NINST-by-1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

IssueDate (Optional) NINST-by-1 matrix for the bond issue date.

FirstCouponDate (Optional) NINST-by-1 matrix for an irregular first coupon date. Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.

LastCouponDate (Optional) NINST-by-1 matrix for an irregular last coupon date. Last coupon date of a bond before the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
\begin{tabular}{ll} 
StartDate & \begin{tabular}{l} 
(Optional) NINST-by-1 matrix (reserved input \\
argument, currently unused) for date when \\
a bond actually starts (the date from which \\
a bond's cash flows can be considered). To \\
make an instrument forward starting, specify \\
this date as a future date. If StartDate is not \\
explicitly specified, the effective start date is the \\
settlement date.
\end{tabular} \\
Face & \begin{tabular}{l} 
(Optional) NINST-by-1 matrix for the face value.
\end{tabular} \\
& The default value is 100.
\end{tabular}

Note Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\section*{Description}
```

InstSet = instoptembnd (CouponRate, Settle,
Maturity,...OptSpec, Strike, ExerciseDates,
'AmericanOpt',... AmericanOpt, 'Period',
Period, 'Basis', Basis,... 'EndMonthRule',
EndMonthRule,'Face', Face, 'IssueDate',...IssueDate,
'FirstCouponDate', FirstCouponDate,... 'LastCouponDate',
LastCouponDate,'StartDate',StartDate) creates InstSet, a
variable containing a collection of instruments.

```

Note instopembnd uses optional parameter name/value pairs such that, 'Name1', Value1, 'Name2', Value2, and so on, are a variable length list of name/value pairs.

\section*{instoptembnd}

Instruments are broken down by type and each type can have different data fields. Each stored data field has a row vector or string for each instrument. See instget for more information on the InstSet variable.
InstSet \(=\) instoptembnd(InstSetOld, CouponRate, ...) adds 'OptEmBond' instruments to an instrument variable.
[FieldList, ClassList, TypeString] = instoptembnd lists field metadata for the 'OptEmBond' instrument.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.
ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a bond option instrument, TypeString = 'OptEmBond'.

\section*{Examples}

To create a bond with embedded options with the following data:
```

Settle = 'jan-1-2007';
Maturity = 'jan-1-2010';
CouponRate = 0.07;
OptSpec = 'call';
Strike= 100;
ExerciseDates= {'jan-1-2008' '01-Jan-2010'};
AmericanOpt=1;
Period = 1;
InstSet = instoptembnd(CouponRate, ...
Settle, Maturity, OptSpec, Strike, ExerciseDates,'AmericanOpt', American0pt, ...
'Period', Period);

```

To display the instrument:
```

instdisp(InstSet)

```

\section*{See Also}
instadd, instdisp, instget

Purpose
Construct stock option
Syntax
```

InstSet = instoptstock(InstSet, OptSpec, Strike,
Settle, ExerciseDates)
InstSet = instoptstock(InstSet, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt)
[FieldList, ClassList, TypeString] = instoptstock

```

\section*{Arguments}

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.

\section*{instoptstock}
\(\left.\begin{array}{ll}\text { Strike } & \begin{array}{l}\text { European option: NINST-by-1 vector of strike } \\ \text { price values. } \\ \text { Bermuda option: NINST by number of strikes } \\ \text { (NSTRIKES) matrix of strike price values. }\end{array} \\ \text { Each row is the schedule for one option. If } \\ \text { an option has fewer than NSTRIKES exercise } \\ \text { opportunities, the end of the row is padded with } \\ \text { NaNs. } \\ \text { Settle } & \begin{array}{l}\text { American option: NINST-by-1 vector of strike } \\ \text { price values for each option. }\end{array} \\ \text { ExerciseDates } & \begin{array}{l}\text { NINST-by-1 vector of settlement dates. }\end{array} \\ \quad \begin{array}{l}\text { NINST-by-1 (European option) or }\end{array} \\ \text { NINST-by-NSTRIKES (Bermuda option) } \\ \text { matrix of exercise dates. Each row is the schedule } \\ \text { for one option. For a European option, there is } \\ \text { only one exercise date, the option expiry date. }\end{array}\right\}\)

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Description InstSet = instoptstock(InstSet, OptSpec, Strike, Settle, ExerciseDates) specifies a European or Bermuda option.

InstSet = instoptstock(InstSet, OptSpec, Strike, Settle, ExerciseDates, American0pt) specifies an American option if American0pt is set to 1. If American0pt is not set to 1 , the function specifies a European or Bermuda option.
[FieldList, ClassList, TypeString] = instoptstock displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.
TypeString is a string specifying the type of instrument added. For a stock option instrument, TypeString = 'OptStock'.

See Also
instadd, instdisp, instget

\section*{instselect}

\section*{Purpose Create instrument subset by matching conditions}
```

Syntax InstSubSet = instselect(InstSet, 'FieldName', FieldList,
'Data', DataList, 'Index', IndexSet,'Type', TypeList)

```

\section*{Arguments}
\begin{tabular}{cl} 
InstSet & \begin{tabular}{l} 
Variable containing a collection of instruments. \\
Instruments are classified by type; each type can \\
have different data fields. The stored data field is a \\
row vector or string for each instrument.
\end{tabular} \\
FieldList & \begin{tabular}{l} 
String or number of fields (NFIELDS)-by-1 cell array \\
of strings listing the name of each data field to match \\
with data values.
\end{tabular} \\
DataList & \begin{tabular}{l} 
Number of values (NVALUES)-by-M array or \\
NFIELDS-by-1 cell array of acceptable data values for \\
each field. Each row lists a data row value to search \\
for in the corresponding FieldList. The number \\
of columns is arbitrary and matching will ignore \\
trailing NaNs or spaces.
\end{tabular} \\
IndexSet & \begin{tabular}{l} 
(Optional) Number of instruments (NINST)-by-1 \\
vector restricting positions of instruments to check \\
for matches. The default is all indices available in \\
the instrument variable.
\end{tabular} \\
TypeList & \begin{tabular}{l} 
(Optional) String or number of types (NTYPES)-by-1 \\
cell array of strings restricting instruments to match
\end{tabular} \\
one of TypeList types. The default is all types in the \\
instrument variable.
\end{tabular}

Argument value pairs can be entered in any order. The InstSet variable must be the first argument. 'FieldName' and 'Data' arguments must appear together or not at all. 'Index' and 'Type' arguments are each optional.

\section*{Description}

\section*{Examples}

InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet,'Type', TypeList) creates an instrument subset (InstSubSet) from an existing set of instruments (InstSet).

InstSubSet is a variable containing instruments matching the input criteria. Instruments are returned in InstSubSet if all the Field, Index, and Type conditions are met. An instrument meets an individual Field condition if the stored FieldName data matches any of the rows listed in the DataList for that FieldName. See instfind for examples on matching criteria.

Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat. The variable contains three types of instruments: Option, Futures, and TBill.
```

load InstSetExamples
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

```

Make a new portfolio containing only options struck at 95.
```

Opt95 = instselect(ExampleInst, 'FieldName', 'Strike',...
'Data', '95')

```

\section*{instselect}
```

instdisp(Opt95)
Opt95 =
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0

```

Make a new portfolio containing only futures and Treasury bills.
```

FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})
instdisp(FutTBill) =
Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000
Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6

```

\section*{See Also}
instaddfield, instdelete, instfind, instget, instgetcell

\section*{Purpose Add or reset data for existing instruments}

\section*{Syntax}
```

InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList)
InstSet = instsetfield(InstSet, 'FieldName', FieldList,
'Data', DataList, 'Index', IndexSet, 'Type', TypeList)

```

\section*{Arguments}
\(\left.\begin{array}{cl}\text { InstSet } & \begin{array}{l}\text { Variable containing a collection of instruments. } \\ \text { Instruments are classified by type; each type can } \\ \text { have different data fields. The stored data field is a } \\ \text { row vector or string for each instrument. InstSet } \\ \text { must be the first argument in the list. }\end{array} \\ \text { FieldList } & \begin{array}{l}\text { String or number of fields (NFIELDS)-by-1 cell array of } \\ \text { strings listing the name of each data field. FieldList } \\ \text { cannot be named with the reserved names Type or } \\ \text { Index. }\end{array} \\ \text { DataList } & \begin{array}{l}\text { Number of instruments (NINST)-by-M array or } \\ \text { NFIELDS-by-1 cell array of data contents for each field. }\end{array} \\ \text { IndexSet } & \begin{array}{l}\text { Each row in a data array corresponds to a separate } \\ \text { instrument. Single rows are copied to apply to all } \\ \text { instruments to be worked on. The number of columns }\end{array} \\ \text { is arbitrary, and data is padded along columns. }\end{array} \quad \begin{array}{l}\text { NINST-by-1 vector of positions of instruments to } \\ \text { work on. If TypeList is also entered, instruments } \\ \text { referenced must be one of TypeList types and } \\ \text { contained in IndexSet. }\end{array}\right\}\)

Argument value pairs can be entered in any order.

Description
instsetfield sets data for existing instruments in a collection variable.
InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', DataList) resets or adds fields to every instrument.

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', DataList, 'Index', IndexSet, 'Type', TypeList) resets or adds fields to a subset of instruments.

The output InstSet is a new instrument set variable containing the input data.

\section*{Examples}

Retrieve the instrument set ExampleInstSF from the data file InstSetExamples.mat. ExampleInstSF contains three types of instruments: Option, Futures, and TBill.
```

load InstSetExamples;
ISet = ExampleInstSF;
instdisp(ISet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put
Index Type Price
7 TBill 99

```

Enter data for the option in Index 6: Price 2.9 for a Strike of 95.
```

ISet = instsetfield(ISet, 'Index',6,...
'FieldName',{'Strike','Price'}, 'Data',{ 95 , 2.9 });

```
```

instdisp(ISet)
Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4
Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option 95 2.9 Put
Index Type Price
7 TBill 99

```

Create a new field Maturity for the cash instrument.
```

MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',...
'Maturity','FieldClass', 'date', 'Data', MDate);
instdisp(ISet)
Index Type Price Maturity
7 TBill 99 01-Jul-1999

```

Create a new field Contracts for all instruments.
```

ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', 0);
instdisp(ISet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 0
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 0
Index Type Strike Price Opt Contracts

```

\section*{instsetfield}
\begin{tabular}{lllll}
5 & Option 105 & 7.4 Put & 0 \\
6 & Option 95 & 2.9 Put & 0 \\
& & & & \\
Index & Type Price & Maturity & Contracts \\
7 & TBill 99 & \(01-\) Jul-1999 & 0
\end{tabular}

Set the Contracts fields for some instruments.
```

ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],...
'FieldName','Contracts', 'Data', [1000; -1000; -1000; 6]);
instdisp(ISet)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000
Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

```

See Also
instaddfield, instdisp, instget, instgetcell

\section*{Purpose Construct swap instrument}

\author{
Syntax \\ InstSet = instswap(InstSet, LegRate, Settle, Maturity, InstSetLegReset, Basis, Principal, LegType, EndMonthRule) [FieldList, ClassList, TypeString] = instswap
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline InstSet & Instrument variable. This argument is specified only when adding a swap to an existing instrument set. See instget for more information on the InstSet variable. \\
\hline \multirow[t]{3}{*}{LegRate} & Number of instruments (NINST)-by-2 matrix, with each row defined as: \\
\hline & [CouponRate Spread] or [Spread CouponRate] \\
\hline & CouponRate is the decimal annual rate. Spread is the number of basis points over the reference rate. The first column represents the receiving leg, while the second column represents the paying leg. \\
\hline Settle & Settlement date. NINST-by-1 vector of serial date numbers or date strings. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. NINST-by-1 vector of dates representing the maturity date for each swap. \\
\hline LegReset & (Optional) NINST-by-2 matrix representing the reset frequency per year for each swap. Default = [ \(\left.\begin{array}{ll}1 & 1\end{array}\right]\). \\
\hline
\end{tabular}

\section*{instswap}

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- 0 = actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual \(/ 360\)
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default \(=100\).

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is [1,0] for each instrument.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default \(=1\).

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument; the others may be omitted or passed as empty matrices [].

\section*{Description}

Examples
InstSet = instswap(InstSet, LegRate, Settle, Maturity, InstSetLegReset, Basis, Principal, LegType, EndMonthRule) creates a new instrument set containing swap instruments or adds swap instruments to an existing instrument set.
[FieldList, ClassList, TypeString] = instswap displays the classes.

FieldList is a number of fields (NFIELDS)-by- 1 cell array of strings listing the name of each data field for this instrument type.

ClassList is an NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments are parsed. Valid strings are 'dble', 'date', and 'char'.
TypeString is a string specifying the type of instrument added. For a swap instrument, TypeString = 'Swap'.

Create a vanilla swap with the following data:
```

LegRate = [0.065, 0]
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
LegReset = [1, 1];
Basis = 0
Principal = 100
LegType = [1, 0]
>> InstSet = instswap(LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType);

```

View the swap instrument using instdisp:

\footnotetext{
>> instdisp(InstSet)
}

\section*{instswap}
\begin{tabular}{lllllllll} 
Index & Type LegRate & Settle & Maturity & LegReset Basis Principal LegType \\
1 & Swap \(\left[\begin{array}{llllllll}0.065 & 0] & 01-J a n-2007 & 01-J a n-2012 & 1 & 1 & 0 & 100\end{array}\right]\left[\begin{array}{ll}1 & 0\end{array}\right]\)
\end{tabular}

See Also
hjmprice, instaddfield, instbond, instcap, instdisp, instfloor, intenvprice
\begin{tabular}{|c|c|}
\hline Purpose & Construct swaption instrument \\
\hline Syntax & ```
InstSet = instswaption(OptSpec, Strike, ExerciseDates, ...
Spread, Settle, Maturity)
InstSet = instswaption(OptSpec, Strike, ExerciseDates, ...
Spread, Settle, Maturity, AmericanOpt, ...
SwapReset, Basis, Principal)
InstSet = instswaption(InstSetOld, OptSpec, Strike, ...
ExerciseDates, Spread, ...)
[FieldList, ClassList, TypeString] = instswaption;
``` \\
\hline \multirow[t]{6}{*}{Arguments} & Fill unspecified entries in vectors with the value NaN. Only one data argument is required to create the instruments; the others may be omitted or passed as empty matrices []. Type [FieldList, ClassList] \(=\) instswaption to see the classes. Dates can be input as serial date numbers or date strings. \\
\hline & OptSpec NINST-by-1 cell array of strings 'call' or 'put'. A 'call' swaption entitles the buyer to pay the fixed rate. A 'put' swaption entitles the buyer to receive the fixed rate. \\
\hline & Strike NINST-by-1 vector of strike swap rate values. \\
\hline & For a European option: \\
\hline & ExerciseDates NINST-by-1 vector of exercise dates. Each row is the schedule for one option. For a European option, there is only one ExerciseDate on the option expiry date. \\
\hline & \begin{tabular}{l}
AmericanOpt \\
NINST-by- 1 vector of flags. AmericanOpt is 0 for each European option. The default is 0 if AmericanOpt is NaN or not entered.
\end{tabular} \\
\hline
\end{tabular}

For an American option:

\section*{instswaption}

ExerciseDates NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying swap Settle and the single listed ExerciseDate.

AmericanOpt NINST-by-1 vector of flags. AmericanOpt is 1 for each American option. The AmericanOpt argument is required to invoke American exercise rules.

For an American or a European option:
Spread NINST-by-1 vector representing the number of basis points over the reference rate.

Settle NINST-by-1 vector of dates representing the settle date for each swap.

Maturity NINST-by-1 vector of dates representing the maturity date for each swap.

SwapReset

Basis
(Optional) NINST-by-1 vector representing the reset frequency per year for the underlying swap. Default is 1 .
(Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
\[
\begin{array}{ll}
\text { - } 7=\text { actual/365 (Japanese) } \\
\text { - } 8=\text { actual/actual (ISMA) } \\
& \text { - } 9=\text { actual/360 (ISMA) } \\
& \text { - } 10=\text { actual/365 (ISMA) } \\
& \text { - } 11=30 / 360 \mathrm{E} \text { (ISMA) } \\
& \text { - } 12=\text { actual/365 (ISDA) } \\
& \text { - } 13=\mathrm{BUS} / 252 \\
\text { Principal } & \text { (Optional) NINST-by- } 1 \text { vector of the notional } \\
& \text { principal amounts. Default is } 100 .
\end{array}
\]
Description To specify a European option: InstSet = instswaption(OptSpec, Strike, ExerciseDates, ...Spread, Settle, Maturity)

To specify an American option: InstSet = instswaption(OptSpec, Strike, ExerciseDates, ...Spread, Settle, Maturity, AmericanOpt, ...SwapReset, Basis, Principal)

To add swaption instruments to an instrument variable: InstSet = instswaption(InstSetOld, OptSpec, Strike, ...ExerciseDates, Spread, ...)

To list field metadata for the swaption instrument: [FieldList, ClassList, TypeString] = instswaption;

Outputs:

\section*{instswaption}
\begin{tabular}{|c|c|}
\hline InstSet & Variable containing a collection of instruments. Instruments are broken down by type and each type can have different data fields. Each stored data field has a row vector or string for each instrument. For more information on the ISet variable, see instget. \\
\hline FieldList & NFIELDS-by- 1 cell array of strings listing the name of each data field for this instrument type. \\
\hline ClassList & NFIELDS-by- 1 cell array of strings listing the data class of each field. The class determines how arguments will be parsed. Valid strings are 'dble', 'date', and 'char'. \\
\hline TypeString & String specifying the type of instrument added. TypeString = 'Swaption'. \\
\hline
\end{tabular}

\section*{Examples Create two European swaption instruments with the following data:}
```

OptSpec = {'Call'; 'Put'}
Strike = .05;
ExerciseDates = 'jan-1-2011';
Spread=0;
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
AmericanOpt = 0;
OptSpec =
'Call'
'Put'
>> InstSet = instswaption(OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, ...
AmericanOpt);

```

View the two European swaption instruments by using instdisp:
```

>> instdisp(InstSet)
Indx Type OptSpec Stke ExerDates Spread Settle Maturity AmerOpt SwpReset Basis Prinpal
1 Swaption Call 0.05 01-Jan-2011 0 01-Jan-2007 01-Jan-2012 0, 0
2 Swaption Put 0.05 01-Jan-2011 0 01-Jan-2007 01-Jan-2012 0 0 1 0 0, 0

```

\section*{See Also}
instadd, instget, instdisp

\section*{instypes}

Purpose List types
Syntax \(\quad\) TypeList \(=\) insttypes (InstSet)
Arguments

\section*{Description}

TypeList \(=\) insttypes(InstSet) retrieves a list of types stored in an instrument variable.

TypeList is a number of types (NTYPES)-by- 1 cell array of strings listing the Type of instruments contained in the variable.

\section*{Examples}

Retrieve the instrument set variable ExampleInst from the data file InstSetExamples.mat. ExampleInst contains three types of instruments: Option, Futures, and TBill.
load InstSetExamples;
instdisp(ExampleInst)
Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000
Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4-1000
Index Type Strike Price Opt Contracts
5 Option \(105 \quad\) 7.4 Put -1000
6 Option 95 2.9 Put 0
```

Index Type Price Maturity
7 TBill 99 01-Jul-1999

```

List all of the types included in ExampleInst.
```

TypeList = insttypes(ExampleInst)
TypeList =
'Futures'
'Option'
'TBill'

```

\author{
See Also \\ instdisp, instfields, instlength
}

\section*{intenvget}
\begin{tabular}{ll}
Purpose & Properties of interest-rate structure \\
Syntax & ParameterValue \(=\) intenvget (RateSpec, ' 'ParameterName ')
\end{tabular}

\section*{Arguments}

\section*{Description ParameterValue = intenvget(RateSpec,'ParameterName') obtains} the value of the named parameter ParameterName extracted from RateSpec.

\section*{Examples}

Use intenvset to set the interest-rate structure.
```

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')

```

Now use intenvget to extract the values from RateSpec.
```

[R, RateSpec] = intenvget(RateSpec, 'Rates')
R =
0.0500
RateSpec =
FinObj: 'RateSpec'

```

Compounding: 2
Disc: 0.9518
Rates: 0.0500
EndTimes: 2
StartTimes: 0
EndDates: 730871
StartDates: 730505
ValuationDate: 730505
Basis: 0
EndMonthRule: 1

\section*{See Also \\ intenvset}

\section*{intenvprice}
\begin{tabular}{ll}
Purpose & Price instruments from set of zero curves \\
Syntax & Price = intenvprice (RateSpec, InstSet)
\end{tabular}

\section*{Arguments}

\section*{Description}

Price = intenvprice(RateSpec, InstSet) computes arbitrage-free prices for instruments against a set of zero coupon bond rate curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of prices of each instrument. If an instrument cannot be priced, a NaN is returned in that entry.
intenvprice handles the following instrument types: 'Bond', 'CashFlow', 'Fixed', 'Float', 'Swap'. See instadd for information about constructing defined types.

See single-type pricing functions to retrieve pricing information.
\begin{tabular}{ll}
bondbyzero & Price bonds from a set of zero curves. \\
cfbyzero & \begin{tabular}{l}
Price arbitrary cash flow instrument from a set \\
of zero curves.
\end{tabular} \\
fixedbyzero & \begin{tabular}{l}
Fixed-rate note prices from a set of zero curves.
\end{tabular} \\
floatbyzero & Floating-rate note prices from a set of zero curves. \\
swapbyzero & Swap prices from a set of zero curves.
\end{tabular}
```

Examples Load the zero curves and instruments from a data file.
load deriv.mat
instdisp(ZeroInstSet)

```
\begin{tabular}{llcccc}
Index Type CouponRate Settle & Maturity & & FixedReset Basis Principal Name \\
Quantity \\
3 & Fixed 0.04 & \(01-J a n-2000\) & \(01-J a n-2003\) & 1 & NaN \\
\end{tabular}
```

Index Type CouponRate Settle Maturity Period ...

```
Index Type CouponRate Settle Maturity Period ...
Name Quantity
Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4%
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4%
bond 100
bond 100
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2
4% bond 50
4% bond 50
 Price = intenvprice(ZeroRateSpec, ZeroInstSet)
 Price = intenvprice(ZeroRateSpec, ZeroInstSet)
 Price =
 Price =
 98.7159
 98.7159
 97.5334
 97.5334
 98.7159
 98.7159
 100.5529
 100.5529
 3.6923
```

                    3.6923
    ```

See Also hjmprice, hjmsens, instadd, intenvsens, intenvset

\section*{intenvsens}

\section*{Purpose Instrument price and sensitivities from set of zero curves}
```

Syntax [Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

```

\section*{Arguments}

\section*{Description}

RateSpec A structure containing the properties of an interest-rate structure. See intenvset for information on creating RateSpec.

InstSet Variable containing a collection of instruments. Instruments are categorized by type; each type can have different data fields. The stored data field is a row vector or string for each instrument.
[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet) computes dollar prices and price sensitivities for instruments that use a zero coupon bond rate structure.

Delta is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of deltas, representing the rate of change of instrument prices with respect to shifts in the observed forward yield curve. Delta is computed by finite differences.

Gamma is an NINST-by-NUMCURVES matrix of gammas, representing the rate of change of instrument deltas with respect to shifts in the observed forward yield curve. Gamma is computed by finite differences.

Note Both sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-NUMCURVES matrix of prices of each instrument. If an instrument cannot be priced, a NaN is returned.
```

intenvsens handles the following instrument types: 'Bond',
'CashFlow', 'Fixed', 'Float', 'Swap'. See instadd for information about constructing defined types.

```

\section*{Examples Load the tree and instruments from a data file.}
```

load deriv.mat

```
load deriv.mat
instdisp(ZeroInstSet)
```

instdisp(ZeroInstSet)

```
```

Index Type CouponRate Settle Maturity Period ...

```
Index Type CouponRate Settle Maturity Period ...
Name Quantity
Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4%
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4%
bond 100
bond 100
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2
4% bond 50
4% bond 50
Index Type CouponRate Settle Maturity FixedReset Basis Principal Name
Index Type CouponRate Settle Maturity FixedReset Basis Principal Name
Quantity
Quantity
3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80
3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80
[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)
[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)
Delta =
Delta =
 -272.6403
 -272.6403
 -347.4386
 -347.4386
 -272.6403
 -272.6403
 -1.0445
 -1.0445
 -282.0405
 -282.0405
 Gamma =
 Gamma =
 1.0e+003 *
 1.0e+003 *
 1.0298
 1.0298
 1.6227
 1.6227
 1.0298
```

            1.0298
    ```

\section*{intenvsens}

> 0.0033 See Also \(\quad\) hjmprice, hjmsens, instadd, intenvprice, intenvset

\author{
Purpose Set properties of interest-rate structure \\ Syntax [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1', Value1, 'Argument2', Value2, ...) [RateSpec, RateSpecOld] = intenvset intenvset
}

\section*{Arguments}
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
(Optional) An existing interest-rate specification \\
structure to be changed, probably created from a \\
previous call to intenvset.
\end{tabular}
\end{tabular}

Arguments may be chosen from the following table and specified in any order.
Compounding \begin{tabular}{l}
Scalar value representing the rate at which \\
the input zero rates were compounded when \\
annualized. Default \(=2\). This argument \\
determines the formula for the discount factors: \\
Compounding \(=1,2,3,4,6,12\) \\
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the \\
compounding frequency, \(Z\) is the zero rate, and \\
Tis the time in periodic units; for example, \(T\) \\
\(=F\) is 1 year. \\
Compounding \(=365\)
\end{tabular}\(\quad\)\begin{tabular}{l}
Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the \\
number of days in the basis year and \(T\) is a \\
number of days elapsed computed by basis. \\
Compounding \(=-1\)
\end{tabular}

\section*{intenvset}
\begin{tabular}{|c|c|}
\hline & Disc \(=\exp (-T * Z)\), where \(T\) is time in years. \\
\hline Disc & Number of points (NPOINTS) by number of curves (NCURVES) matrix of unit bond prices over investment intervals from StartDates, when the cash flow is valued, to EndDates, when the cash flow is received. \\
\hline Rates & Number of points (NPOINTS) by number of curves (NCURVES) matrix of rates in decimal form. For example, \(5 \%\) is 0.05 in Rates. Rates are the yields over investment intervals from StartDates, when the cash flow is valued, to EndDates, when the cash flow is received. \\
\hline EndDates & NPOINTS-by-1 vector or scalar of serial maturity dates ending the interval to discount over. \\
\hline StartDates & NPOINTS-by-1 vector or scalar of serial dates starting the interval to discount over. Default = ValuationDate. StartDates must be earlier than EndDates. \\
\hline ValuationDate & (Optional) Scalar value in serial date number form representing the observation date of the investment horizons entered in StartDates and EndDates. Default = min(StartDates). \\
\hline \multirow[t]{7}{*}{Basis} & (Optional) Day-count basis of the instrument. A vector of integers. \\
\hline & - \(0=\) actual/actual (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - 2 = actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline
\end{tabular}

> \begin{tabular}{l} - \(6=30 / 360\) (European) \\ - \(7=\) actual/365 (Japanese) \\ - \(8=\) actual/actual (ISMA) \\ - \(9=\) actual/360 (ISMA) \\ - \(10=\) actual/365 (ISMA) \\ - \(11=30 / 360 \mathrm{E}\) (ISMA) \\ - \(12=\) actual/365 (ISDA) \\ - \(13=\) BUS/252 \\ \\ (Optional) End-of-month rule. A vector. \\ \\ \(\begin{array}{l}\text { This rule applies only when Maturity is an } \\ \text { end-of-month date for a month having } 30 \text { or } \\ \text { fewer days. } 0=\text { ignore rule, meaning that } \\ \text { a bond's coupon payment date is always the } \\ \text { same numerical day of the month. } 1=\text { set rule } \\ \text { on (default), meaning that a bond's coupon } \\ \text { payment date is always the last actual day of } \\ \text { the month. }\end{array}\) \\ \hline \end{tabular}

It is sufficient to type only the leading characters that uniquely identify the parameter. Case is ignored for argument names.

When creating a new RateSpec, the set of arguments passed to intenvset must include StartDates, EndDates, and either Rates or Disc.

Call intenvset with no input or output arguments to display a list of argument names and possible values.

\section*{Description}
[RateSpec, RateSpecOld] = intenvset(RateSpec, 'Argument1', Value1, 'Argument2', Value2, ...) creates an interest term structure (RateSpec) in which the input argument list is specified as argument name /argument value pairs. The argument name portion

\section*{intenvset}
of the pair must be recognized as a valid field of the output structure RateSpec; the argument value portion of the pair is then assigned to its paired field.

If the optional argument RateSpec is specified, intenvset modifies an existing interest term structure RateSpec by changing the named argument to the specified values and recalculating the arguments dependent on the new values.
[RateSpec, RateSpecOld] = intenvset creates an interest term structure RateSpec with all fields set to [].
intenvset with no input or output arguments displays a list of argument names and possible values.

RateSpecOld is a structure containing the properties of an interest-rate structure before the changes introduced by the call to intenvset.

\section*{Examples Use intenvset to create a RateSpec.}
```

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')
RateSpec =
FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9518
Rates: 0.0500
EndTimes: 2
StartTimes: 0
EndDates: 730871
StartDates: 730505
ValuationDate: 730505
Basis: 0
EndMonthRule: 1

```

Now change the Compounding argument to 1 (annual).
```

RateSpec = intenvset(RateSpec, 'Compounding', 1)
RateSpec =
FinObj: 'RateSpec'
Compounding: 1
Disc: 0.9518
Rates: 0.0506
EndTimes: 1
StartTimes: 0
EndDates: 730871
StartDates: 730505
ValuationDate: 730505
Basis: 0
EndMonthRule: 1

```

Calling intenvset with no input or output arguments displays a list of argument names and possible values.
intenvset
```

Compounding: [ 1 | {2} | 3 | 4 | 6 | 12 | 365 | -1 ]
Disc: [ scalar | vector (NPOINTS x 1) ]
Rates: [ scalar | vector (NPOINTS x 1) ]
EndDates: [ scalar | vector (NPOINTS x 1) ]
StartDates: [ scalar | vector (NPOINTS x 1) ]
ValuationDate: [ scalar ]
Basis: [ {0} | 1 | 2 | 3 ]
EndMonthRule: [ 0 | {1} ]

```

\section*{See Also}
intenvget

\section*{isafin}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
True if input argument is financial structure type or financial object \\
class
\end{tabular} \\
Syntax & IsFinObj = isafin(Obj, ClassName) \\
Arguments &
\end{tabular}
\begin{tabular}{ll}
Obj & Name of a financial structure. \\
ClassName & \begin{tabular}{l}
String containing the name of a financial structure \\
class.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
Description & IsFinObj = isafin (Obj, ClassName) returns True if input argument \\
is a financial structure type or financial object class, otherwise False \\
is returned.
\end{tabular}
\begin{tabular}{ll}
Examples & load deriv.mat \\
& IsFinObj = isafin(HJMTree, 'HJMFwdTree') returns True
\end{tabular}

See Also classfin

\section*{Purpose}

Price instruments using implied trinomial tree (ITT)

\section*{Syntax}

Price = ittprice(ITTTree, InstSet)
Price \(=\) ittprice(ITTTree, InstSet, Options)
[Price, PriceTree] = ittprice(ITTTree, InstSet, Options)

\section*{Arguments}
\begin{tabular}{cl}
ITTTree & \begin{tabular}{l}
Implied trinomial stock tree. See itttree for \\
information on creating the variable ITTTree.
\end{tabular} \\
InstSet & \begin{tabular}{l}
Variable containing a collection of NINST instruments. \\
Instruments are broken down by type and each type \\
can have different data fields.
\end{tabular} \\
Options & \begin{tabular}{l}
(Optional) Structure created using derivset \\
containing derivative pricing options.
\end{tabular}
\end{tabular}

\section*{Description}
```

Price = ittprice(ITTTree, InstSet)
Price = ittprice(ITTTree, InstSet, Options)
[Price, PriceTree] = ittprice(ITTTree, InstSet, Options)

```

The outputs for ittprice are:
- Price is a NINST-by-1 vector of prices of each instrument at time 0 . The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned in that entry.
- PriceTree is a structure containing trees of vectors of instrument prices and a vector of observation times for each node.
- PriceTree.PTree contains the prices.
- PriceTree.tObs contains the observation times.
- PriceTree.dObs contains the observation dates.

\section*{ittprice}
ittprice computes prices for instruments using an implied trinomial tree created with itttree.

Note ittprice handles the following instrument types: optstock, barrier, Asian, lookback, and compound. Use instadd to construct the defined types.

When using an implied trinomial tree, pricing of path-dependent options is done using Hull-White. Consequently, for these options there are no unique prices on the tree nodes with the exception of the root node. The corresponding nodes of the tree are populated with NaNs for these particular options. For information on single-type pricing functions to retrieve state-by-state pricing tree information, see the following:
- barrierbyitt for pricing barrier options using an ITT tree
- optstockbyitt for pricing American, European or Bermuda options using an ITT tree
- asianbyitt for pricing Asian options using an ITT tree
- lookbackbyitt for pricing lookback options using an ITT tree
- compoundbyitt for price compound options using an ITT tree

Examples Load the ITT tree and instruments from the data file deriv.mat. load deriv.mat

Price the barrier and Asian options contained in the instrument set.
```

ITTSubSet = instselect(ITTInstSet,'Type', {'Barrier', 'Asian'});

```
instdisp(ITTSubSet)

See Also ittsens, itttree

Purpose
Instrument sensitivities and prices using implied trinomial tree (ITT)

\section*{Syntax}
```

[Delta, Gamma, Vega] = ittsens(ITTTree, InstSet)
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet)
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet,
Options)

```

\section*{Arguments}
\begin{tabular}{cl}
ITTTree & \begin{tabular}{l}
Implied trinomial stock tree. See itttree for \\
information on creating the variable ITTTree.
\end{tabular} \\
InstSet & \begin{tabular}{l}
Variable containing a collection of NINST instruments. \\
Instruments are broken down by type and each type \\
can have different data fields.
\end{tabular} \\
Options & \begin{tabular}{l}
(Optional) Structure created using derivset \\
containing derivative pricing options.
\end{tabular}
\end{tabular}

\section*{Description}
[Delta, Gamma, Vega] = ittsens(ITTTree, InstSet) [Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet) [Delta, Gamma, Vega, Price] = ittsens(ITTTree, InstSet, Options)
The outputs for ittsens are:
- Delta is a NINST-by- 1 vector of deltas, representing the rate of change of instruments prices with respect to changes in the stock price.
- Gamma is a NINST-by-1 vector of gammas, representing the rate of change of instruments deltas with respect to changes in the stock price.
- Vega is a NINST-by-1 vector of vegas, representing the rate of change of instruments prices with respect to changes in the volatility of the stock. Vega is computed by finite differences in calls to itttree.
- Price is a NINST-by-1 vector of prices of each instrument. The prices are computed by backward dynamic programming on the stock tree. If an instrument cannot be priced, a NaN is returned.
ittsens computes dollar sensitivities and prices for instruments using an ITT tree created with itttree.

Note ittsens handles the following instrument types: optstock, barrier, Asian, lookback, and compound. Use instadd to construct the defined types.

For path-dependent options (lookbacks and Asians), Delta and Gamma are computed by finite differences in calls to ittprice. For the rest of the options (optstock, barrier, and compound), Delta and Gamma are computed from the ITT tree and the corresponding option price tree.

All sensitivities are returned as dollar sensitivities. To find the per-dollar sensitivities, they must be divided by their respective instrument price.

\section*{Examples}

Load the ITT tree and instruments from the data file deriv.mat. Compute the Delta and Gamma sensitivities of vanilla options and barrier option contained in the instrument set.
```

load deriv.mat
ITTSubSet = instselect(ITTInstSet,'Type', {'OptStock', 'Barrier'});
instdisp(ITTSubSet)
>> instdisp(ITTSubSet)
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
1 OptStock call 95 01-Jan-2006 31-Dec-2008 1 % Call1 10
2 OptStock put 80 01-Jan-2006 01-Jan-2010 0 Put1 4

```
```

Index Type OptSpec Strike Settle ExercDates AmerOpt BarrSpec Barr Rebate Name Quantity
3 Barrier call 85 01-Jan-2006 31 -Dec-2008 1 ui $115 \quad 0 \quad$ Barrier1 1
[Delta, Gamma] = ittsens(ITTTree, ITTSubSet)

```

Warning: The option set specified in StockOptSpec was too narrow for the generated tree. This made extrapolation necessary. Below is a list of the options that were outside of the range of those specified in StockOptSpec.

> In itttree>InterpOptPrices at 675
In itttree at 277
In stocktreesens>stocktreevega at 191
In stocktreesens at 92
In ittsens at 81

Delta =
0.2387
\(-0.4283\)
0.3482

Gamma =
0.0260
0.0188
0.0380

\title{
References Chriss, Neil. and I. Kawaller, Black-Scholes and Beyond: Options Pricing Models, McGraw-Hill, 1996, pp. 308-312.
}

See Also ittprice, itttree

\section*{itttimespec}

Purpose Specify time structure using implied trinomial tree (ITT)
Syntax TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)

\section*{Arguments}

\section*{Description}

TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods) creates the structure specifying the time layout for an ITT tree.

Examples Specify a four-period tree with time steps of 1 year.
```

ValuationDate = '1-July-2006';
Maturity = '1-July-2010';
TimeSpec = itttimespec(ValuationDate, Maturity, 4);

```

See Also itttree, stockspec

\title{
Purpose Build implied trinomial stock tree \\ Syntax itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec) \\ Arguments
}
\begin{tabular}{ll}
StockSpec & \begin{tabular}{l}
Stock specification. For more information, see \\
stockspec.
\end{tabular} \\
RateSpec & \begin{tabular}{l}
Interest rate specification of the initial risk-free rate \\
curve. For more information on declaring an interest \\
rate variable, see intenvset.
\end{tabular} \\
TimeSpec & \begin{tabular}{l}
Tree time layout specification. Defines the \\
observation dates of the implied trinomial tree. \\
For more information on the tree structure, see \\
itttimespec.
\end{tabular} \\
StockOptSpec & \begin{tabular}{l}
Option stock specification. For more information, see \\
stockoptspec.
\end{tabular}
\end{tabular}

\section*{Description}
itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec) creates the itttree structure specifying stock and time information for an implied trinomial tree.

\section*{Examples}

For this example, assume that the interest rate is fixed at \(8 \%\) annually between the valuation date of the tree (January 1, 2006) until its maturity.
```

Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

```

\section*{ittrree}

To build an ITTTree, create StockSpec, TimeSpec, and StockOptSpec structures.

To create theStockSpec structure:
```

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2007'; '01-Apr-2007'; '05-July-2007';'01-Oct-2007'}
StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: 'cash'
DividendAmounts: [4x1 double]
ExDividendDates: [4x1 double]

```

The syntax for building a TimeSpec structure is TimeSpec \(=\) itttimespec(ValuationDate, Maturity, NumPeriods).

Consider building an ITT tree, with a valuation date of January 1, 2006; a maturity date of January 1, 2008; and four time steps.
```

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)
TimeSpec =
FinObj: 'ITTTimeSpec'
ValuationDate: 732678

```
```

            Maturity: 733408
    NumPeriods: 4
        Basis: 0
    EndMonthRule: 1
tObs: [0 0.5000 1 1.5000 2]
dObs: [732678 732860 733043 733225 733408]

```

The syntax for building a StockOptSpec structure is [StockOptSpec] \(=\) stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec).
```

Settle = '01/01/06';

```
Maturity = ['07/01/06';
 '07/01/06';
 '07/01/06';
 '07/01/06';
 '01/01/07';
 '01/01/07';
 '01/01/07';
 '01/01/07';
 '07/01/07';
 '07/01/07';
 '07/01/07';
 '07/01/07';
 '01/01/08';
 '01/01/08';
 '01/01/08';
 '01/01/08'];
Strike = [113;
 101;
 100;
 88;
 128;
 112;
 100;
 78;

\section*{itttree}
```

    144;
    112;
    100;
    69;
    162;
    112;
    100;
    61];
    OptPrice =[
0;
4.807905472659144;
1.306321897011867;
0.048039195057173;
0;
2.310953054191461;
1.421950392866235;
0.020414826276740;
0;
5.091986935627730;
1.346534812295291;
0.005101325584140;
0;
8.047628153217246;
1.219653432150932;
0.001041436654748];
OptSpec = { 'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put';
'call';
'call';

```
```

        'put';
        'put';
        'call';
        'call';
        'put';
        'put'};
    StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
StockOptSpec =
FinObj: 'StockOptSpec'
OptPrice: [16x1 double]
Strike: [16x1 double]
Settle: 732678
Maturity: [16x1 double]
OptSpec: {16x1 cell}
InterpMethod: 'price'

```

Note In this example, the extrapolation warnings are turned on to display warnings on the Command Window. These warnings are a consequence of having to extrapolate to find the option price of the tree nodes. These warnings are a consequence of having to extrapolate to find the option price of the tree nodes. In this example, the set of inputs options was too narrow for the shift in the tree nodes introduced by the disturbance used to calculate the sensitivities. As a consequence extrapolation for some of the nodes was needed.

Use the following command to turn on extrapolation warnings:
```

warning('on', 'finderiv:itttree:Extrapolation');

```

Use the StockSpec, RateSpec, TimeSpec, and StockOptSpec structure to create an ITTTree.
```

ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

```

\section*{ittrree}

Warning: The option set specified in StockOptSpec was too narrow for the generated tree. This made extrapolation necessary. Below is a list of the options that were outside of the range of those specified in StockOptSpec.
\begin{tabular}{|c|c|c|}
\hline Option Type: 'call' & Maturity: 02-Jul-2006 & Strike=60.7466 \\
\hline Option Type: 'put' & Maturity: 02-Jul-2006 & Strike=50.0731 \\
\hline Option Type: 'put' & Maturity: 02-Jul-2006 & Strike=41.3344 \\
\hline Option Type: 'c & Maturity: 01-Jan-2007 & Strike=73.8592 \\
\hline Option Type: 'ca & Maturity: 01-Jan-2007 & Strike=60.8227 \\
\hline Option Type: 'p & Maturity: 01-Jan-2007 & Strike=50.1492 \\
\hline Option Type: 'put' & Maturity: 01-Jan-2007 & Strike=41.4105 \\
\hline Option Type: 'p & Maturity: 01-Jan-2007 & Strike=34.2559 \\
\hline Option Type: 'call' & Maturity: 02-Jul-2007 & Strike=88.8310 \\
\hline Option Type: 'c & Maturity: 02-Jul-2007 & 081 \\
\hline Option Type: 'call' & Maturity: 02-Jul-2007 & Strike=59.8715 \\
\hline Option Type: 'p & Maturity: 02-Jul-2007 & Strike=49.1980 \\
\hline Option Type: 'put' & Maturity: 02-Jul-2007 & Strike=40.4594 \\
\hline Option Type: 'put' & Maturity: 02-Jul-2007 & Strike=33.3047 \\
\hline Option Type: 'put' & Maturity: 02-Jul-2007 & Strike=27.4470 \\
\hline Option Type: 'call' & Maturity: 01-Jan-2008 & Strike=107.2895 \\
\hline Option Type: 'call' & Maturity: 01-Jan-2008 & Strike=87.8412 \\
\hline Option Type: 'call' & Maturity: 01-Jan-2008 & Strike=71.9183 \\
\hline Option Type: 'call' & Maturity: 01-Jan-2008 & Strike=58.8817 \\
\hline Option Type: 'put' & Maturity: 01-Jan-2008 & Strike=48.2083 \\
\hline Option Type: 'put' & Maturity: 01-Jan-2008 & Strike=39.4696 \\
\hline Option Type: 'put' & Maturity: 01-Jan-2008 & Strike=32.3150 \\
\hline Option Type: 'put' & Maturity: 01-Jan-2008 & Strike=26.4573 \\
\hline Option Type: 'put' & Maturity: 01-Jan-2008 & Strike=21.6614 \\
\hline
\end{tabular}
> In itttree>InterpOptPrices at 675
In itttree at 277

\section*{ITTTree \(=\)}

\author{
FinObj: 'ITStockTree' \\ StockSpec: [1×1 struct]
}
```

StockOptSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.5000000000000000 1 1.500000000000000 2]
dObs: [732678 732860 733043 733225 733408]
STree: {1x5 cell}
Probs: {[3\times1 double] [3x3 double] [3x5 double] [3\times7 double]}

```

\section*{See Also \\ intenvset, itttimespec, stockoptspec, stockspec}

\section*{lookbackbycrr}

Purpose Price lookback option from CRR tree

\author{
Syntax PriceTree = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)
}

\section*{Arguments}
\begin{tabular}{ll}
CRRTree & \begin{tabular}{l}
Stock tree structure created by crrtree. \\
OptSpec \\
Number of instruments (NINST)-by-1 cell array \\
of strings 'call' or 'put '.
\end{tabular} \\
Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each \\
row is the schedule for one option. To calculate \\
the value of a floating-strike lookback option, \\
specify Strike as NaN.
\end{tabular} \\
ExerciseDates & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle \\
date for every lookback is set to the valuation \\
date of the stock tree. The lookback argument
\end{tabular} \\
& \begin{tabular}{l}
Settle is ignored.
\end{tabular} \\
\begin{tabular}{l}
For a European option (AmericanOpt = 0):
\end{tabular} \\
\begin{tabular}{l}
NINST-by-1 vector of exercise dates. Each row \\
is the schedule for one option. For a European \\
option, there is only one exercise date, the \\
option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt = 1):
\end{tabular} \\
\begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries.
\end{tabular} \\
\begin{tabular}{l}
For each instrument, the option can be \\
exercised on any tree date between or including \\
the pair of dates on that row. If only one
\end{tabular} \\
non-NaN date is listed, or if ExerciseDates \\
is NINST-by-1, the option can be exercised
\end{tabular}

\section*{lookbackbycrr}
between the valuation date of the stock tree and the single listed exercise date.
\begin{tabular}{ll}
AmericanOpt & (Optional) If AmericanOpt \(=0, \mathrm{NaN}\), or is \\
unspecified, the option is a European option. If \\
AmericanOpt \(=1\), the option is an American \\
option.
\end{tabular}

\section*{Description}

PriceTree = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) calculates the value of fixed- and floating-strike lookback options. Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Price is a NINST-by- 1 vector of expected option prices at time 0 .

\begin{abstract}
Note lookbackbycrr calculates values of fixed and floating strike lookback options. To compute the value of a floating strike lookback option, strike should be specified as NaN. Pricing of lookback options is done using Hull-White (1993). Consequently, for these options there are not unique prices on the tree nodes with the exception of the root node.
\end{abstract}

Examples Price a lookback option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat;

```

Set the required values. Other arguments will use defaults.
```

OptSpec = 'Call';
Strike = 115;

```

\section*{lookbackbycrr}
```

Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
7.6015

```
References

Hull, J., and A. White, "Efficient Procedures for Valuing European
 and American Path-Dependent Options," Journal of Derivatives, Fall
 1993, pp. 21-31.

\author{
See Also
}
crrtree, instlookback

\section*{Purpose}

Price lookback option from EQP binomial tree

\author{
Syntax
}

Arguments
\begin{tabular}{ll}
EQPTree & \begin{tabular}{l}
Stock tree structure created by eqptree. \\
OptSpec \\
Number of instruments (NINST)-by-1 cell array \\
of strings 'call' or 'put '.
\end{tabular} \\
Settle & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each \\
row is the schedule for one option. To calculate \\
the value of a floating-strike lookback option, \\
specify Strike as NaN.
\end{tabular} \\
ExerciseDates & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle \\
date for every lookback is set to the valuation \\
date of the stock tree. The lookback argument
\end{tabular} \\
& \begin{tabular}{l}
Settle is ignored.
\end{tabular} \\
\begin{tabular}{l}
For a European option (AmericanOpt = 0):
\end{tabular} \\
\begin{tabular}{l}
NINST-by-1 vector of exercise dates. Each row \\
is the schedule for one option. For a European \\
option, there is only one exercise date, the \\
option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt = 1):
\end{tabular} \\
\begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries.
\end{tabular} \\
\begin{tabular}{l}
For each instrument, the option can be \\
exercised on any tree date between or including \\
the pair of dates on that row. If only one
\end{tabular} \\
non-NaN date is listed, or if ExerciseDates \\
is NINST-by-1, the option can be exercised
\end{tabular}
between the valuation date of the stock tree and the single listed exercise date.
AmericanOpt (Optional) If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European option. If AmericanOpt \(=1\), the option is an American option.

\section*{Description}

Price = lookbackbyeqp(EQPTree, OptSpec, Strike, ExerciseDates, AmericanOpt) calculates the value of fixed- and floating-strike lookback options. Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

Price is a NINST-by- 1 vector of expected option prices at time 0 .

Note lookbackbyeqp calculates values of fixed and floating strike lookback options. To compute the value of a floating strike lookback option, strike should be specified as NaN. Pricing of lookback options is done using Hull-White (1993). Consequently, for these options there are not unique prices on the tree nodes with the exception of the root node.

Examples Price a lookback option using an EQP equity tree.
Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat

```

Set the required values. Other arguments will use defaults.
```

OptSpec = 'Call';
Strike = 115;

```
```

Settle = '01-Jan-2003';
ExcerciseDates = '01-Jan-2006';
Price = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
8.7941

```

\title{
References Hull, J., and A. White, "Efficient Procedures for Valuing European and American Path-Dependent Options," Journal of Derivatives, Fall 1993, pp. 21-31.
}

\author{
See Also \\ eqptree, instlookback
}

\section*{lookbackbyitt}

Purpose
Price lookback option using implied trinomial tree (ITT)

\author{
Syntax \\ [Price, PriceTree] = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)
}

\section*{Arguments}
\begin{tabular}{ll}
ITTTree & Stock tree structure created by itttree. \\
OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell array \\
of strings 'call' or 'put '.
\end{tabular} \\
Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. Each \\
row is the schedule for one option. To calculate \\
the value of a floating-strike lookback option, \\
specify Strike as NaN.
\end{tabular} \\
Settle & \begin{tabular}{l}
NINST-by-1 vector of Settle dates. The settle \\
date for every lookback option is set to the \\
ValuationDate of the stock tree. The lookback \\
argument Settle is ignored.
\end{tabular} \\
& \begin{tabular}{l}
For a European option (AmericanOpt = 0):
\end{tabular} \\
\begin{tabular}{l}
NINST-by-1 vector of exercise dates. Each row \\
is the schedule for one option. For a European \\
option, there is only one exercise date, the \\
option expiry date.
\end{tabular} \\
\begin{tabular}{l}
For an American option (AmericanOpt \(=1\)):
\end{tabular} \\
\begin{tabular}{l}
NINST-by-2 vector of exercise date boundaries. \\
For each instrument, the option can be \\
exercised on any tree date between or including \\
the pair of dates on that row. If only one
\end{tabular} \\
non-NaN date is listed, or if ExerciseDates \\
is NINST-by-1, the option can be exercised
\end{tabular}

\section*{lookbackbyitt}
between the valuation date of the stock tree and the single listed exercise date.
AmericanOpt \begin{tabular}{l}
(Optional) If AmericanOpt \(=0, \mathrm{NaN}\), or is \\
unspecified, the option is a European option. If \\
AmericanOpt \(=1\), the option is an American \\
option.
\end{tabular}

\section*{Description}

Price \(=\) lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, American0pt) calculates the value of fixed- and floating-strike lookback options. Data arguments for lookbackbyitt are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument; the others may be omitted or passed as empty matrices [].

Price is a NINST-by-1 vector of expected option prices at time 0 .

\begin{abstract}
Note lookbackbyitt calculates values of fixed and floating strike lookback options. To compute the value of a floating strike lookback option, strike should be specified as NaN. Pricing of lookback options is done using Hull-White (1993). Consequently, for these options there are not unique prices on the tree nodes with the exception of the root node.
\end{abstract}

Examples Price a lookback option using an ITT equity tree.
Load the file deriv.mat which provides the ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat

```

Set the required values. Other arguments will use defaults.
```

OptSpec = 'Call';
Strike = 85;

```

\section*{lookbackbyitt}
```

Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2008';
Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)
Price =
0.5426

```

References Hull, J., and A. White, "Efficient Procedures for Valuing European and American Path-Dependent Options," Journal of Derivatives, Fall 1993, pp. 21-31.

\author{
See Also \\ instlookback, itttree
}

\section*{Purpose}

Syntax

\section*{Arguments}

\section*{Description}

\section*{Examples}

Calculate European rainbow option price on maximum of two risky assets using Stulz option pricing model
```

Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,
Settle, Maturity, OptSpec, Strike, Corr)

```
\begin{tabular}{|c|c|}
\hline RateSpec & The annualized, continuously compounded rate term structure. For information on the interest rate specification, see intenvset. \\
\hline StockSpec1 & Stock specification for asset 1. See stockspec. \\
\hline StockSpec2 & Stock specification for asset 2. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by- 1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline Corr & NINST-by-1 vector of correlation between the underlying asset prices. \\
\hline
\end{tabular}

Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) computes rainbow option prices using the Stulz option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Consider a European rainbow option that gives the holder the right to buy either \(\$ 100,000\) worth of an equity index at a strike price of 1000 (asset 1) or \(\$ 100,000\) of a government bond (asset 2) with a strike price of \(100 \%\) of face value, whichever is worth more at the end of 12 months. On January 15, 2008, the equity index is trading at 950, pays a dividend
of \(2 \%\) annually and has a return volatility of \(22 \%\). Also on January 15 , 2008 , the government bond is trading at 98, pays a coupon yield of \(6 \%\), and has a return volatility of \(15 \%\). The risk-free rate is \(5 \%\). Using this data, if the correlation between the rates of return is \(-0.5,0\), and 0.5 , calculate the price of the European rainbow option.

Since the asset prices in this example are in different units, it is necessary to work in either index points (asset 1) or in dollars (asset 2). The European rainbow option allows the holder to buy the following: 100 units of the equity index at \(\$ 1000\) each (for a total of \(\$ 100,000\)) or 1000 units of the government bonds at \(\$ 100\) each (for a total of \(\$ 100,000\)). To convert the bond price (asset 2) to index units (asset 1), you must make the following adjustments:
- Multiply the strike price and current price of the government bond by 10 (1000/100).
- Multiply the option price by 100, considering that there are 100 equity index units in the option.

Once these adjustments are introduced, the strike price is the same for both assets (\$1000).

Create the RateSpec:
```

Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

```

Create the two StockSpec definitions:
```

AssetPrice1 = 950; % Asset 1 => Equity index
AssetPrice2 = 980; % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;

```
```

Div1 = 0.02;
Div2 = 0.06;
StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1);
StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2);

```

Calculate the price of the options for different correlation levels:
```

Strike = 1000 ;
Corr = [-0.5; 0; 0.5];
OptSpec = 'call';
Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr)
Price =
111.6683
103.7715
92.4412

```

These are the prices of one unit. This means that the premium is 11166.83, 10377.15, and 9244.12 (for 100 units).

\section*{Purpose}

\author{
Syntax
}
```

PriceSens = maxassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
PriceSens = maxassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline RateSpec & The annualized, continuously compounded rate term structure. For information on the interest rate specification, see intenvset. \\
\hline StockSpec1 & Stock specification for asset 1. See stockspec. \\
\hline StockSpec2 & Stock specification for asset 2. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline Corr & NINST-by-1 vector of correlation between the underlying asset prices. \\
\hline OutSpec & (Optional) All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial string matches are allowed provided no ambiguities exist. Valid parameter names are: \\
\hline
\end{tabular}
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are 'Price',
```

'Delta', 'Gamma', 'Vega','Lambda', 'Rho',
'Theta', or 'All'.
For example,OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be Price, Lambda, and Rho, in that order.
To invoke from a function: [Price, Lambda, Rho] = maxassetsensbystulz(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})
OutSpec $=$ \{'All' $\}$ specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.

- Default is OutSpec = \{'Price'\}.

```

\section*{Description}

\section*{Examples}

PriceSens = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) computes rainbow option prices using the Stulz option pricing model.

PriceSens = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec) computes rainbow option prices and sensitivities using the Stulz option pricing model.

PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices and sensitivities values.

Consider a European rainbow option that gives the holder the right to buy either \(\$ 100,000\) of an equity index at a strike price of 1000 (asset 1) or \(\$ 100,000\) of a government bond (asset 2) with a strike price of \(100 \%\) of face value, whichever is worth more at the end of 12 months. On January 15,2008 , the equity index is trading at 950 , pays a dividend of \(2 \%\) annually, and has a return volatility of \(22 \%\). Also on January 15,

2008, the government bond is trading at 98 , pays a coupon yield of \(6 \%\), and has a return volatility of \(15 \%\). The risk-free rate is \(5 \%\). Using this data, calculate the price and sensitivity of the European rainbow option if the correlation between the rates of return is \(-0.5,0\), and 0.5 .

Since the asset prices in this example are in different units, it is necessary to work in either index points (for asset 1) or in dollars (for asset 2). The European rainbow option allows the holder to buy the following: 100 units of the equity index at \(\$ 1000\) each (for a total of \(\$ 100,000\)) or 1000 units of the government bonds at \(\$ 100\) each (for a total of \(\$ 100,000\)). To convert the bond price (asset 2) to index units (asset 1), uou must make the following adjustments:
- Multiply the strike price and current price of the government bond by 10 (1000/100).
- Multiply the option price by 100, considering that there are 100 equity index units in the option.

Once these adjustments are introduced, the strike price is the same for both assets (\$1000).
Create the RateSpec:
```

Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

```

Create the two StockSpec definitions:
```

AssetPrice1 = 950; % Asset 1 => Equity index
AssetPrice2 = 980; % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;
Div1 = 0.02;

```
```

Div2 = 0.06;
StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1);
StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2);

```

Calculate the price and delta for different correlation levels:
```

Strike = 1000 ;
Corr = [-0.5; 0; 0.5];
OutSpec = {'price'; 'delta'};
[Price, Delta] = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr,'OutSpec', OutSpec)
Price =
111.6683
103.7715
92.4412
Delta =
0.4594 0.3698
0.4292 0.3166
0.4053 0.2512

```

The output Delta has two columns: the first column represents the Delta with respect to the equity index (asset 1), and the second column represents the Delta with respect to the government bond (asset 2). The value 0.4595 represents Delta with respect to one unit of the equity index. Since there are 100 units of the equity index, the overall Delta would be 45.94 (100 * 0.4594) for a correlation level of -0.5 . To calculate the Delta with respect to the government bond, remember that an adjusted price of 980 was used instead of 98 . Therefore, for example, the Delta with respect to government bond, for a correlation of 0.5 would be 251.2 (0.2512 * 100 * 10).

See Also
intenvset, maxassetbystulz, stockspec

\section*{Purpose}

Syntax

Arguments

\section*{Description}

\section*{Examples}

Calculate European rainbow option prices on minimum of two risky assets using Stulz option pricing model
```

Price = minassetbystulz(RateSpec, StockSpec1, StockSpec2,
Settle, Maturity, OptSpec, Strike, Corr)

```
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized, continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec1 & \begin{tabular}{l}
Stock specification for asset 1. See stockspec.
\end{tabular} \\
StockSpec2 & \begin{tabular}{l}
Stock specification for asset 2 . See stockspec.
\end{tabular} \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. \\
Corr
\end{tabular} \\
& \begin{tabular}{l}
NINST-by-1 vector of correlation between the \\
underlying asset prices.
\end{tabular}
\end{tabular}

Price = minassetbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) computes option prices using the Stulz option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Consider a European rainbow put option that gives the holder the right to sell either stock A or stock B at a strike of 50.25 , whichever has the lower value on the expiration date May 15, 2009. On November 15, 2008 , stock A is trading at 49.75 with a continuous annual dividend yield of \(4.5 \%\) and has a return volatility of \(11 \%\). Stock B is trading at 51 with a continuous dividend yield of \(5 \%\) and has a return volatility

\section*{minassetbystulz}
of \(16 \%\). The risk-free rate is \(4.5 \%\). Using this data, if the correlation between the rates of return is \(-0.5,0\), and 0.5 , calculate the price of the minimum of two assets that are European rainbow put options.

Create the RateSpec:
```

Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

```

Create the two StockSpec definitions:
```

AssetPriceA = 49.75;
AssetPriceB = 51;
SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045;
DivB = 0.05;
StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA);
StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB);

```

Compute the price of the options for different correlation levels:
```

Strike = 50.25;
Corr = [-0.5;0;0.5];
OptSpec = 'put';
Price = minassetbystulz(RateSpec, StockSpecA, StockSpecB, Settle,...
Maturity, OptSpec, Strike, Corr)
Price =
3.4320

```
3.1384
2.7694

The values 3.43, 3.14, and 2.77 are the price of the European rainbow put options with a correlation level of \(-0.5,0\), and 0.5 respectively.

\section*{See Also}
intenvset, maxassetbystulz, minassetsensbystulz, stockspec

\section*{minassetsensbystulz}

\section*{Purpose}

\author{
Syntax
}
```

PriceSens = minassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr)
PriceSens = minassetsensbystulz(RateSpec, StockSpec1,
StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec)

```

\section*{Arguments}
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec1 & \begin{tabular}{l}
Stock specification for asset 1. See stockspec.
\end{tabular} \\
StockSpec2 & \begin{tabular}{l}
Stock specification for asset 2. See stockspec.
\end{tabular} \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put '. \\
Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values.
\end{tabular} \\
Corr & \begin{tabular}{l}
NINST-by-1 vector of correlation between the \\
underlying asset prices.
\end{tabular} \\
& \begin{tabular}{l}
(Optional) All optional inputs are specified as \\
matching parameter name/value pairs. The
\end{tabular} \\
& \begin{tabular}{l}
parameter name is specified as a character string, \\
followed by the corresponding parameter value.
\end{tabular} \\
& \begin{tabular}{l}
You can specify parameter name/value pairs \\
in any order. Names are case-insensitive and
\end{tabular} \\
& \begin{tabular}{l}
partial string matches are allowed provided no \\
ambiguities exist. Valid parameter names are:
\end{tabular}
\end{tabular}
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are 'Price',
```

'Delta', 'Gamma','Vega','Lambda', 'Rho',
'Theta', or 'All'.
For example,OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be Price, Lambda, and Rho, in that order.
To invoke from a function: [Price, Lambda, Rho] = minassetsensbystulz(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})
OutSpec $=\{$ 'All' $\}$ specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.

- Default is OutSpec = \{'Price' $\}$.

```

\section*{Description}

PriceSens = minassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr) computes rainbow option prices using the Stulz option pricing model.

PriceSens = minassetsensbystulz(RateSpec, StockSpec1, StockSpec2, Settle, Maturity, OptSpec, Strike, Corr, OutSpec) computes rainbow option prices and sensitivities using the Stulz option pricing model.

PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices and sensitivities.

\section*{Examples}

Consider a European rainbow put option that gives the holder the right to sell either stock A or stock B at a strike of 50.25 , whichever has the lower value on the expiration date May 15, 2009. On November 15, 2008 , stock A is trading at 49.75 with a continuous annual dividend yield of \(4.5 \%\) and has a return volatility of \(11 \%\). Stock B is trading at 51 with a continuous dividend yield of \(5 \%\) and has a return volatility

\section*{minassetsensbystulz}
of \(16 \%\). The risk-free rate is \(4.5 \%\). Using this data, if the correlation between the rates of return is \(-0.5,0\), and 0.5 , calculate the price and sensitivity of the minimum of two assets that are European rainbow put options.

Create the RateSpec:
```

Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis);

```

Create the two StockSpec definitions:
```

AssetPriceA = 49.75;
AssetPriceB = 51;
SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045;
DivB = 0.05;
StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA);
StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB);

```

Calculate price and delta for different correlation levels:
```

Strike = 50.25;
Corr = [-0.5;0;0.5];
OutSpec = {'Price'; 'delta'};
[P, D] = minassetsensbystulz(RateSpec, StockSpecA, StockSpecB,...
Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)
P =
3.4320

```
\begin{tabular}{lll}
& 3.1384 \\
2.7694 \\
\(D=\) & \\
& \\
& \\
-0.4183 & -0.3496 \\
-0.3746 & -0.3189 \\
-0.3304 & -0.2905
\end{tabular}

The output Delta has two columns: the first column represents the Delta with respect to the stock A (asset 1), and the second column represents the Delta with respect to the stock B (asset 2). The value 0.4183 represents Delta with respect to the stock A for a correlation level of -0.5 . The Delta with respect to stock B, for a correlation of zero is -0.3189 .

\section*{See Also}
intenvset, minassetbystulz, stockspec

\section*{mkbush}

Purpose
Create bushy tree
Syntax \(\quad \begin{aligned} & \text { [Tree, NumStates] } \\ & \text { NodeVal) }\end{aligned}\)
Arguments
\begin{tabular}{ll}
NumLevels & \begin{tabular}{l}
Number of time levels of the tree. \\
NumChild \\
1-by- number of levels (NUMLEVELS) vector with \\
number of branches (children) of the nodes in each \\
level.
\end{tabular} \\
NumPos & \begin{tabular}{l}
1-by-NUMLEVELS vector containing the length of the \\
state vectors in each time level.
\end{tabular} \\
Trim & \begin{tabular}{l}
(Optional) Scalar 0 or 1. If Trim \(=1\), NumPos \\
decreases by 1 when moving from one time level to \\
the next. Otherwise, if Trim \(=0\) (Default), NumPos \\
does not decrease.
\end{tabular} \\
NodeVal & \begin{tabular}{l}
(Optional) Initial value at each node of the tree. \\
Default = NaN.
\end{tabular}
\end{tabular}

Description [Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim, NodeVal) creates a bushy tree Tree with initial values NodeVal at each node. NumStates is a 1 -by-NUMLEVELS vector containing the number of state vectors in each level.

Create a tree with four time levels, two branches per node, and a vector of three elements in each node with each element initialized to NaN.
```

Tree = mkbush(4, 2, 3);
treeviewer(Tree)

```


See Also
bushpath, bushshape

\section*{mktree}

Purpose Create recombining binomial tree
```

Syntax $\quad$ Tree $=$ mktree (NumLevels, NumPos, NodeVal, IsPriceTree)

```

\section*{Arguments}
\begin{tabular}{ll}
NumLevels & \begin{tabular}{l}
Number of time levels of the tree.
\end{tabular} \\
NumPos & \begin{tabular}{l}
1-by-NUMLEVELS vector containing the length of \\
the state vectors in each time level.
\end{tabular} \\
NodeVal & \begin{tabular}{l}
(Optional) Initial value at each node of the tree. \\
Default \(=\) NaN.
\end{tabular} \\
IsPriceTree & \begin{tabular}{l}
(Optional) Boolean determining if a final \\
horizontal branch is added to the tree. \\
Default \(=0\).
\end{tabular}
\end{tabular}

\section*{Description Tree \(=\) mktree(NumLevels, NumPos, NodeVal, IsPriceTree) creates a recombining tree Tree with initial values NodeVal at each node.}

\section*{Examples}

Create a recombining tree of four time levels with a vector of two elements in each node and each element initialized to NaN .
\[
\text { Tree }=\text { mktree }(4,2) \text {; }
\]

See Also treepath, treeshape
\begin{tabular}{ll}
Purpose & Create recombining trinomial tree \\
Syntax & TrinTree \(=\) mktrintree(NumLevels, NumPos, NumStates, NodeVal) \\
Arguments &
\end{tabular}

NumLevels Number of time levels of the tree.
NumPos 1-by-NUMLEVELS vector containing the length of the state vectors in each time level.

NumStates 1-by-NUMLEVELS vector containing the number of state vectors in each time level.

NodeVal (Optional) Initial value at each node of the tree. Default \(=\mathrm{NaN}\).
\begin{tabular}{|c|c|}
\hline Description & TrinTree \(=\) mktrintree (NumLevels, NumPos, NumStates, NodeVal) creates a recombining tree Tree with initial values NodeVal at each node. \\
\hline Examples & Create a recombining trinomial tree of four time levels with a vector of two elements in each node and each element initialized to NaN. \\
\hline & TrinTree = mktrintree(4, \(\left.\mathrm{ll}_{2}^{2} 222\right]\), \(\left.\left[\begin{array}{llll}1 & 3 & 5 & 7\end{array}\right]\right)\); \\
\hline See Also & trintreepath, trintreeshape \\
\hline
\end{tabular}

Purpose Create money-market tree from BDT interest-rate tree
Syntax MmktTree \(=\) mmktbybdt (BDTTree)

\section*{Arguments}

BDTTree Interest-rate tree structure created by bdttree.

\section*{Description}

\section*{Examples}

MMktTree \(=\) mmktbybdt (BDTTree) creates a money-market tree from an interest-rate tree structure created by bdttree.
```

load deriv.mat;
MMktTree = mmktbybdt(BDTTree);
treeviewer(MMktTree)

```


See Also bdttree

Purpose Create money-market tree from HJM interest-rate tree
Syntax MmktTree \(=\) mmktbyhjm(HJMTree)

\section*{Arguments}

HJMTree Forward-rate tree structure created by hjmtree.

\section*{Description}

MMktTree \(=\) mmktbyhjm(HJMTree) creates a money-market tree from a forward-rate tree structure created by hjmtree.

\section*{Examples}
```

load deriv.mat;
MMktTree = mmktbyhjm(HJMTree);
treeviewer(MMktTree)

```


See Also
hjmtree

\section*{optbndbybdt}

Purpose Price bond option from BDT interest-rate tree

\author{
Syntax [Price, PriceTree] = optbndbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
}

\section*{Arguments}
\begin{tabular}{ll}
BDTTree & \begin{tabular}{l}
Forward-rate tree structure created by \\
bdttree.
\end{tabular} \\
OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell \\
array of string values 'Call' or 'Put'.
\end{tabular} \\
Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of \\
strike price values.
\end{tabular} \\
& \begin{tabular}{l}
Bermuda option: NINST by number of \\
strikes (NSTRIKES) matrix of strike price \\
values.
\end{tabular} \\
& \begin{tabular}{l}
Each row is the schedule for one option. \\
If an option has fewer than NSTRIKES \\
exercise opportunities, the end of the row \\
is padded with NaNs.
\end{tabular} \\
& For an American option: \\
NINST-by-1 vector of strike price values for \\
each option.
\end{tabular}
\(\left.\begin{array}{ll}\text { ExerciseDates } & \begin{array}{l}\text { NINST-by-1 (European option) or } \\ \text { NINST-by-NSTRIKES (Bermuda option) } \\ \text { matrix of exercise dates. Each row is the } \\ \text { schedule for one option. For a European } \\ \text { option, there is only one exercise date, the } \\ \text { option expiry date. }\end{array} \\ & \text { For an American option: } \\ & \text { NINST-by-2 vector of exercise date } \\ \text { boundaries. For each instrument, the } \\ \text { option can be exercised on any coupon date } \\ \text { between or including the pair of dates } \\ \text { on that row. If only one non-NaN date is } \\ \text { listed, or if ExerciseDates is NINST-by-1, } \\ \text { the option can be exercised between the } \\ \text { underlying bond Settle and the single }\end{array}\right\}\)
(Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

EndMonthRule

IssueDate
(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
(Optional) Date when a bond was issued.
\(\left.\begin{array}{ll}\text { FirstCouponDate } & \begin{array}{l}\text { (Optional) Date when a bond makes its first } \\ \text { coupon payment. When FirstCouponDate } \\ \text { and LastCouponDate are both specified, } \\ \text { FirstCouponDate takes precedence in } \\ \text { determining the coupon payment structure. }\end{array} \\ \text { LastCouponDate } & \begin{array}{l}\text { (Optional) Last coupon date of a bond prior } \\ \text { to the maturity date. In the absence of a } \\ \text { specified FirstCouponDate, a specified } \\ \text { LastCouponDate determines the coupon } \\ \text { structure of the bond. The coupon } \\ \text { structure of a bond is truncated at the } \\ \text { LastCouponDate regardless of where it } \\ \text { falls and is followed only by the bond's } \\ \text { maturity cash flow date. } \\ \text { (Optional) Date when a bond actually }\end{array} \\ \text { startDate (the date from which a bond } \\ \text { stash flow is considered). To make an } \\ \text { castris } \\ \text { instrument forward-starting, specify this } \\ \text { date as a future date. If you do not specify } \\ \text { StartDate, the effective start date is the }\end{array}\right\}\)

The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a BDT interest-rate tree.

\section*{optbndbybdt}

Price is an NINST-by- 1 matrix of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

Examples
Example 1. Using the BDT interest-rate tree in the deriv.mat file, price a European call option on a \(10 \%\) bond with a strike of 95 . The exercise date for the option is Jan. 01, 2002. The settle date for the bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the time and forward-rate information needed to price the bond.
```

load deriv.mat;

```

Use optbondbybdt to compute the price of the option.
```

Price = optbndbybdt(BDTTree,'Call',95,'01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003','1')
Price =

```
1.7657

Example 2. Now use optbndbybdt to compute the price of a put option on the same bond.
```

Price = optbndbybdt(BDTTree,'Put',95,'01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003','1')
Price =

```
 0.5740
bdtprice, bdttree, instoptbnd

\section*{Purpose}

Price bond option from Black-Karasinski interest-rate tree
Syntax [Price, PriceTree] = optbndbybk(BKTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)

\section*{Arguments}
\begin{tabular}{ll}
ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or \\
NINST-by-NSTRIKES (Bermuda option) \\
matrix of exercise dates. Each row is the \\
schedule for one option. For a European \\
option, there is only one exercise date, the \\
option expiry date.
\end{tabular} \\
& For an American option: \\
& NINST-by-2 vector of exercise date \\
boundaries. For each instrument, the \\
option can be exercised on any coupon \\
date between or including the pair of dates \\
on that row. If only one non-NaN date is \\
listed, or if ExerciseDates is NINST-by-1, \\
the option can be exercised between the \\
underlying bond Settle and the single \\
listed exercise date.
\end{tabular}

\begin{tabular}{ll}
FirstCouponDate & \begin{tabular}{l}
(Optional) Date when a bond makes its first \\
coupon payment. When FirstCouponDate \\
and LastCouponDate are both specified,
\end{tabular} \\
& FirstCouponDate takes precedence in \\
determining the coupon payment structure. \\
LastCouponDate & (Optional) Last coupon date of a bond prior \\
to the maturity date. In the absence of \\
a specified FirstCouponDate, a specified \\
LastCouponDate determines the coupon \\
structure of the bond. The coupon \\
structure of a bond is truncated at the \\
LastCouponDate regardless of where it falls \\
and is followed only by the bond's maturity \\
cash flow date.
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the BK tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbybk(BKTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a Black-Karasinski interest rate tree.

Price is an NINST-by- 1 matrix of expected prices at time 0 .

\section*{Examples}

PriceTree is a tree structure with a vector of instrument prices at each node.

Example 1. Using the BK interest rate tree in the deriv.mat file, price a European call option on a \(4 \%\) bond with a strike of 96 . The exercise date for the option is Jan. 01, 2006. The settle date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the time and forward-rate information needed to price the bond.
```

load deriv.mat;

```

Use optbondbybk to compute the price of the option.
```

Price = optbndbybk(BKTree,'Call',96,'01-Jan-2006',...
'0','0.04','01-Jan-2005','01-Jan-2009')
Warning: OptBonds are valued at Tree ValuationDate rather than Settle
> In optbndbytrintree at 43
In optbndbybk at 88
Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
> In optbndbytrintree at 151
In optbndbybk at 88
Price =
0.1512

```

Example 2. Now use optbndbybk to compute the price of a put option on the same bond.
```

Price = optbndbybk(BKTree,'Put',96,'01-Jan-2006', ...
'0','0.04','01-Jan-2005','01-Jan-2009')

```
Warning: OptBonds are valued at Tree ValuationDate rather than Settle
```

> In optbndbytrintree at 43
In optbndbybk at 88
Warning: Not all cash flows are aligned with the tree. Result will be
approximated.
> In optbndbytrintree at 151
In optbndbybk at 88
Price =
0.0272

```

\section*{Purpose}

Price bond option from HJM interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
}

\section*{Arguments}
\begin{tabular}{ll}
HJMTree & \begin{tabular}{l}
Forward-rate tree structure created by \\
hjmtree.
\end{tabular} \\
OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell \\
array of string values 'Call' or 'Put '.
\end{tabular} \\
& \begin{tabular}{l}
European option: NINST-by-1 vector of strike \\
price values.
\end{tabular} \\
\begin{tabular}{l}
Bermuda option: NINST by number of strikes \\
(NSTRIKES) matrix of strike price values.
\end{tabular} \\
& \begin{tabular}{l}
Each row is the schedule for one option. If \\
an option has fewer than NSTRIKES exercise \\
opportunities, the end of the row is padded \\
with NaNs.
\end{tabular} \\
For an American option: \\
FINST-by-1 vector of strike price values for \\
each option.
\end{tabular}
\begin{tabular}{|c|c|}
\hline ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date. \\
For an American option: \\
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non- NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.
\end{tabular} \\
\hline AmericanOpt & NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 (American). \\
\hline CouponRate & Decimal annual rate. \\
\hline Settle & Settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity. \\
\hline Maturity & Maturity date. A vector of serial date numbers or date strings. \\
\hline Period & (Optional) Coupons per year of the bond. A vector of integers. Allowed values are 1, 2, 3, 4,6 , and 12. Default \(=2\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Basis & (Optional) Day-count basis of the instrument. \\
\hline & - \(0=\mathrm{actual} / \mathrm{actual}\) (default) \\
\hline & - \(1=30 / 360\) (SIA) \\
\hline & - 2 = actual/360 \\
\hline & - 3 = actual/365 \\
\hline & - \(4=30 / 360\) (PSA) \\
\hline & - \(5=30 / 360\) (ISDA) \\
\hline & - \(6=30 / 360\) (European) \\
\hline & - \(7=\) actual/365 (Japanese) \\
\hline & - \(8=\) actual/actual (ISMA) \\
\hline & - 9 = actual/360 (ISMA) \\
\hline & - \(10=\mathrm{actual} / 365\) (ISMA) \\
\hline & - \(11=30 / 360 \mathrm{E}\) (ISMA) \\
\hline & - \(12=\mathrm{actual} / 365\) (ISDA) \\
\hline & - 13 = BUS/252 \\
\hline EndMonthRule & (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month. \\
\hline IssueDate & (Optional) Date when a bond was issued. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline FirstCouponDate & (Optional) Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure. \\
\hline LastCouponDate & (Optional) Last coupon date of a bond prior to the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and is followed only by the bond's maturity cash flow date. \\
\hline StartDate & (Optional) Date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date. \\
\hline Face & (Optional) Face value. Default \(=100\). \\
\hline Options & (Optional) Derivatives pricing options structure created with derivset. \\
\hline
\end{tabular}

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond option from an HJM forward-rate tree.

Price is an NINST-by- 1 matrix of expected prices at time 0 .

\section*{Examples}
```

Price = optbndbyhjm(HJMTree,'Call',96,'01-Jan-2003',...
'0','0.04','01-Jan-2000','01-Jan-2004')
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
2.2410

```

Use optbondbyhjm to compute the price of the option.

See Also hjmprice, hjmtree, instoptbnd

\section*{optbndbyhw}

Purpose
Price bond option from Hull-White interest-rate tree

\author{
Syntax \\ [Price, PriceTree] = optbndbyhw(HWTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options)
}

\section*{Arguments}
\begin{tabular}{ll}
HWTree & \begin{tabular}{l}
Forward-rate tree structure created by \\
hwtree.
\end{tabular} \\
OptSpec & \begin{tabular}{l}
Number of instruments (NINST)-by-1 cell \\
array of string values 'Call' or 'Put '.
\end{tabular} \\
Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of \\
strike price values.
\end{tabular} \\
& \begin{tabular}{l}
Bermuda option: NINST by number of \\
strikes (NSTRIKES) matrix of strike price \\
values.
\end{tabular} \\
& \begin{tabular}{l}
Each row is the schedule for one option. \\
If an option has fewer than NSTRIKES \\
exercise opportunities, the end of the row
\end{tabular} \\
is padded with NaNs. \\
& For an American option: \\
& NINST-by-1 vector of strike price values \\
for each option.
\end{tabular}
\(\left.\begin{array}{ll}\text { ExerciseDates } & \begin{array}{l}\text { NINST-by-1 (European option) or } \\
\text { NINST-by-NSTRIKES (Bermuda option) } \\
\text { matrix of exercise dates. Each row is the } \\
\text { schedule for one option. For a European } \\
\text { option, there is only one exercise date, the } \\
\text { option expiry date. }\end{array} \\
& \text { For an American option: } \\
& \text { NINST-by-2 vector of exercise date } \\
\text { boundaries. For each instrument, the } \\
\text { option can be exercised on any coupon } \\
\text { date between or including the pair of } \\
\text { dates on that row. If only one non-NaN } \\
\text { date is listed, or if ExerciseDates is } \\
& \text { NINST-by-1, the option can be exercised } \\
\text { between the underlying bond Settle and } \\
\text { the single listed exercise date. }\end{array}\right\}\)\begin{tabular}{l}
NINST-by-1 vector of flags: 0 \\
(European/Bermuda) or 1 (American). \\
American0pt \\
CouponRate \\
Settle \\
Decimal annual rate.
\end{tabular}

Basis
(Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

EndMonthRule

IssueDate
(Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. \(0=\) ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
(Optional) Date when a bond was issued.
\(\left.\left.\begin{array}{ll}\text { FirstCouponDate } & \begin{array}{l}\text { (Optional) Date when a bond makes } \\ \text { its first coupon payment. When }\end{array} \\ \text { FirstCouponDate and LastCouponDate } \\ \text { are both specified, FirstCouponDate } \\ \text { takes precedence in determining the } \\ \text { coupon payment structure. }\end{array}\right\} \begin{array}{l}\text { (Optional) Last coupon date of a bond } \\ \text { before the maturity date. In the absence } \\ \text { of a specified FirstCouponDate, a } \\ \text { specified LastCouponDate determines the } \\ \text { coupon structure of the bond. The coupon } \\ \text { structure of a bond is truncated at the }\end{array}\right\}\)

The Settle date for every bond is set to the ValuationDate of the HW tree. The bond argument Settle is ignored.

\section*{Description}
[Price, PriceTree] = optbndbyhw(HWTree, OptSpec, Strike, ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face, Options) computes the price of a bond option from a Hull-White interest rate tree.

\section*{optbndbyhw}

Price is an NINST-by- 1 matrix of expected prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples}

Example 1. Using the HW interest rate tree in the deriv.mat file, price a European call option on a \(4 \%\) bond with a strike of 96 . The exercise date for the option is Jan. 01, 2006. The settle date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the time and forward-rate information needed to price the bond.
```

load deriv.mat;

```

Use optbondbyhw to compute the price of the option.
```

Price = optbndbyhw(HWTree,'Call',96,'01-Jan-2006',...
'0','0.04','01-Jan-2005','01-Jan-2009')
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =
1.1556

```

Example 2. Now use optbondbyhw to compute the price of a put option on the same bond.
```

Price = optbndbyhw(HWTree,'Put',96,'01-Jan-2006',...
'0','0.04','01-Jan-2005','01-Jan-2009')
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =

```

See Also hwprice, hwtree, instoptbnd

\section*{optembndbybdt}

Purpose

Syntax
[Price, PriceTree] = optembndbybdt(BDTTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...)

\section*{Arguments}
\begin{tabular}{ll}
BDTTree & \begin{tabular}{l}
Interest-rate tree structure created by \\
bdttree.
\end{tabular} \\
CouponRate & \begin{tabular}{l}
NINST-by-1 matrix for the decimal annual \\
rate.
\end{tabular} \\
Settle & \begin{tabular}{l}
NINST-by-1 matrix for the settlement date. A \\
vector of serial date numbers or date strings. \\
Settle must be earlier than Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l}
NINST-by-1 matrix for the maturity date. A \\
vector of serial date numbers or date strings.
\end{tabular} \\
Strike & \begin{tabular}{l}
NINST-by-1 cell array of strings ' call' or \\
'put'. \\
European option: NINST-by-1 vector of strike
\end{tabular} \\
& \begin{tabular}{l}
price values. \\
Bermuda option: NINST by number of strikes \\
(NSTRIKES) matrix of strike price values.
\end{tabular} \\
& \begin{tabular}{l}
Each row is the schedule for one option. If \\
an option has fewer than NSTRIKES exercise \\
opportunities, the end of the row is padded \\
with NaNs.
\end{tabular} \\
For an American option:
\end{tabular}
\begin{tabular}{|c|c|}
\hline ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date. \\
For an American option: \\
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.
\end{tabular} \\
\hline \begin{tabular}{l}
'Name1', \\
'Value1' 'Name2', \\
'Value2'...
\end{tabular} & (Optional) The name/value pairs are a variable length list of parameters. All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case insensitive and partial string matches are allowed provided no ambiguities exist. Valid \\
\hline & \begin{tabular}{l}
- AmericanOpt is a NINST-by-1 matrix for flags options: 0 (European/Bermuda) or 1 (American). Default is 0 . \\
- Period is a NINST-by- 1 matrix for coupons per year. The default value is 2 .
\end{tabular} \\
\hline
\end{tabular}

\section*{optembndbybdr}
- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following possible values:
- 0 = actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual \(/ 360\)
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- 8 = actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252
- EndMonthRule is a NINST-by-1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 the end-of-month rule is ignored; this means that a bond's coupon payment date is always the same numerical day of the month. Use 1 to set the rule on; this is the default value and means that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by-1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for an irregular first coupon date. This is the date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
- LastCouponDate is a NINST-by-1 matrix for an irregular last coupon date. This is the last coupon date of a bond before the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
- StartDate is a NINST-by- 1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 matrix for the face value. The default value is 100 .
- Options is a derivatives pricing options structure created with derivset.

\section*{optembndbybdt}

Note The Settle date for every bond with an embedded option is set to the ValuationDate of the BDT tree; the bond's argument for Settle date is ignored.

\section*{Description}
[Price, PriceTree] = optembndbybdt(BDTTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates,'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options using a BDT interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples To price a callable bond using the BDT model, create a BDTTree with} the following data:
```

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

```

Create a RateSpec:
```

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

```

Specify a VolSpec:
```

Volatility = 0.10 * ones (3,1);
VolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

```

Specify a TimeSpec:
```

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

```

Build the BDTTree:
```

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec);

```

To compute the price of an American callable bond that pays a \(5.25 \%\) annual coupon, matures in Jan-1-2010, and is callable on Jan-1-2008 and 01-Jan-2010:
```

BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.0525;
Period = 1;
OptSpec = 'call';
Strike = [100];
ExerciseDates = {'jan-1-2008' '01-Jan-2010'};
AmericanOpt = 1;
PriceCallBond = optembndbybdt(BDTTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp', 1)
PriceCallBond =
101.4750

```

See Also
bdtprice, bdttree, instoptembnd

\section*{optembndbybk}

Purpose

Syntax
[Price, PriceTree] = optembndybk(BKTree, CouponRate, Settle, Maturity, OptSpec, Strike, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...)

\section*{Arguments}
\begin{tabular}{ll}
BKTree & \begin{tabular}{l}
Interest-rate tree structure created by \\
bktree.
\end{tabular} \\
CouponRate & \begin{tabular}{l}
NINST-by-1 matrix for the decimal annual \\
rate.
\end{tabular} \\
Settle & \begin{tabular}{l}
NINST-by-1 matrix for the settlement date. A \\
vector of serial date numbers or date strings.
\end{tabular} \\
Saturity & \begin{tabular}{l}
Settle must be earlier than Maturity.
\end{tabular} \\
OptSpec & \begin{tabular}{l}
Nector of serial date numbers or date strings.
\end{tabular} \\
Strike & \begin{tabular}{l}
NINST-by-1 cell array of strings ' call' or \\
'put'. \\
European option: NINST-by-1 vector of strike
\end{tabular} \\
& \begin{tabular}{l}
price values. \\
Bermuda option: NINST by number of strikes \\
(NSTRIKES) matrix of strike price values.
\end{tabular} \\
& \begin{tabular}{l}
Each row is the schedule for one option. If \\
an option has fewer than NSTRIKES exercise \\
opportunities, the end of the row is padded \\
with NaNs.
\end{tabular} \\
For an American option:
\end{tabular}
\begin{tabular}{|c|c|}
\hline ExerciseDates & \begin{tabular}{l}
NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date. \\
For an American option: \\
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.
\end{tabular} \\
\hline \begin{tabular}{l}
'Name1', Value1, \\
'Name2', Value2 ...
\end{tabular} & (Optional) The name/value pairs are a variable length list of parameters. All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case insensitive and partial string matches are allowed provided no ambiguities exist. Valid parameter names are as follows: \\
\hline
\end{tabular}
- AmericanOpt is a NINST-by-1 matrix for flags options: 0 (European/Bermuda) or 1 (American). Default is 0 .
- Period is a NINST-by-1 matrix for coupons per year. Default is 2 .

\section*{optembndbybk}
- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following supported values:
- 0 = actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- 8 = actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- 10 = actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252
- EndMonthRule is a NINST-by-1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by- 1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for an irregular first coupon date. Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
- LastCouponDate is a NINST-by-1 matrix for an irregular last coupon date. Last coupon date of a bond before the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
- StartDate is a NINST-by-1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 matrix for the face value. The default value is 100 .
- Options is a derivatives pricing options structure created with derivset.

Note The Settle date for every bond with embedded option is set to the ValuationDate of the BKTree; the bond's argument for Settle date is ignored.

\section*{Description}
[Price, PriceTree] = optembndybk(BKTree, CouponRate, Settle, Maturity, OptSpec, Strike, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options by a BK interest-rate tree.

Price is a number of instruments (NINST)-by- 1 matrix of expected prices at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples Create a BKTree with the following data:}
```

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

```

Create a RateSpec:
```

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);
Specify a TimeSpec:
BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

```

Specify a VolSpec:
```

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve);

```

Build a BKTree:
```

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);

```

To compute the price of an American puttable bond that pays an annual coupon of \(5.25 \%\), matures on January 1, 2010, and is callable on January 1, 2008 and January 1, 2010:
```

BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put';
Strike = [100];
ExerciseDates = {'jan-1-2008' '01-Jan-2010'};
AmericanOpt = 1;
PricePutBondBK = optembndbybk(BKTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)
PricePutBondBK =
102.3820

```

\section*{optembndbyhim}

Purpose

Syntax
[Price, PriceTree] = optembndbyhjm(HJMTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates, 'Name1', Value1, 'Name2', Value2, ...)

\section*{Arguments}
\begin{tabular}{ll}
HJMTree & \begin{tabular}{l}
Interest-rate tree structure created by \\
hjmtree.
\end{tabular} \\
CouponRate & \begin{tabular}{l}
NINST-by-1 matrix for the decimal annual \\
rate.
\end{tabular} \\
Settle & \begin{tabular}{l}
NINST-by-1 matrix for the settlement date. A \\
vector of serial date numbers or date strings.
\end{tabular} \\
Maturity & \begin{tabular}{l}
Settle must be earlier than Maturity.
\end{tabular} \\
OptSpec & \begin{tabular}{l}
NINST-by-1 matrix for the maturity date. A \\
vector of serial date numbers or date strings.
\end{tabular} \\
Strike & \begin{tabular}{l}
NINST-by-1 cell array of strings ' call' or \\
'put'.
\end{tabular} \\
& \begin{tabular}{l}
European option: NINST-by-1 vector of strike \\
price values.
\end{tabular} \\
\begin{tabular}{l}
Bermuda option: NINST by number of strikes \\
(NSTRIKES) matrix of strike price values.
\end{tabular} \\
& \begin{tabular}{l}
Each row is the schedule for one option. If \\
an option has fewer than NSTRIKES exercise
\end{tabular} \\
opportunities, the end of the row is padded \\
with NaNs.
\end{tabular}

- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following supported values:
- 0 = actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual/360
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- 8 = actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- 10 = actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252
- EndMonthRule is a NINST-by-1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by-1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for an irregular first coupon date. Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
- LastCouponDate is a NINST-by-1 matrix for an irregular last coupon date. Last coupon date of a bond before the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
- StartDate is a NINST-by-1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 matrix for the face value. The default value is 100 .
- Options is a derivatives pricing options structure created with derivset.

Note The Settle date for every bond with embedded option is set to the ValuationDate of the HJM tree; the bond's argument for Settle date is ignored.

\section*{Description}
[Price, PriceTree] = optembndbyhjm(HJMTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates,'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options by an HJM interest-rate tree.
Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:
- PriceTree. PBush contains the clean prices.
- PriceTree.AIBush contains the accrued interest.
- PriceTree.tObs contains the observation times.

Examples Create an HJMTree with the following data:
```

Rates = [0.05;0.06;0.07];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

```

Create a RateSpec:
```

RateSpec = intenvset('Rates', Rates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate);

```

Specify a VolSpec:
```

VolSpec = hjmvolspec('Constant', 0.01);

```

Specify a TimeSpec:
```

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);

```

Build an HJMTree:
```

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec);

```

To compute the price of an American callable bond that pays a \(6 \%\) annual coupon and matures and is callable on January 1, 2010:
```

BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.06;
Period = 1;
OptSpec = 'call';
Strike = [98];
ExerciseDates = '01-Jan-2010';
AmericanOpt = 1;
[PriceCallBond,PT] = optembndbyhjm(HJMTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp',1)
PriceCallBond =
95.9492
PT =
FinObj: 'HJMPriceTree'
tObs: [00 1 2 3]
PBush: {[95.9492] [1\times1x2 double] [1x2x2 double] [98 98 98 98]}

```
See Also

hjmprice, hjmtree, instoptembnd

\section*{optembndbyhw}

Purpose
Price bonds with embedded options by Hull-White interest-rate tree
```

Syntax
[Price, PriceTree] = optmbndbyhw(HWTree, CouponRate,
Settle, Maturity, OptSpec, Strike, ExerciseDates,
'Name1', Value1, 'Name2', Value2, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline HWTree & Interest-rate tree structure created by hwtree. \\
\hline CouponRate & NINST-by-1 matrix for the decimal annual rate. \\
\hline Settle & NINST-by- 1 matrix for the settlement date. A vector of serial date numbers or date strings. Settle must be earlier than Maturity. \\
\hline Maturity & NINST-by- 1 matrix for the maturity date. A vector of serial date numbers or date strings. \\
\hline OptSpec & NINST-by- 1 cell array of strings 'call' or 'put'. \\
\hline \multirow[t]{5}{*}{Strike} & European option: NINST-by-1 vector of strike price values. \\
\hline & Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values. \\
\hline & Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs. \\
\hline & For an American option: \\
\hline & NINST-by- 1 vector of strike price values for each option. \\
\hline
\end{tabular}
\(\left.\begin{array}{ll}\text { ExerciseDates } & \begin{array}{l}\text { NINST-by-1 (European option) or } \\ \\ \\ \\ \\ \text { NINST-by-NSTRIKES (Bermuda option) } \\ \text { matrix of exercise dates. Each row is the } \\ \text { schedule for one option. For a European } \\ \text { option, there is only one exercise date, the } \\ \text { option expiry date. }\end{array} \\ & \text { For an American option: } \\ & \text { NINST-by-2 vector of exercise date boundaries. } \\ & \text { For each instrument, the option can be } \\ & \text { exercised on any coupon date between or } \\ \text { including the pair of dates on that row. }\end{array}\right\}\)

\section*{optembndbyhw}
- Basis is a day-count basis of the instrument. Basis is a vector of integers with the following supported values:
- 0 = actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual \(/ 360\)
- 3 = actual/365
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- 8 = actual/actual (ISMA)
- 9 = actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252
- EndMonthRule is a NINST-by-1 matrix for the end-of-month rule. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. When the value is 0 , the end-of-month rule is ignored, meaning that a bond's coupon payment date is always the same numerical day of the month. When the value is 1 , the end-of-month rule is set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.
- IssueDate is a NINST-by-1 matrix for the bond issue date.
- FirstCouponDate is a NINST-by-1 matrix for an irregular first coupon date. Date when a bond makes its first coupon payment. When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate takes precedence in determining the coupon payment structure.
- LastCouponDate is a NINST-by-1 matrix for an irregular last coupon date. Last coupon date of a bond before the maturity date. In the absence of a specified FirstCouponDate, a specified LastCouponDate determines the coupon structure of the bond. The coupon structure of a bond is truncated at the LastCouponDate regardless of where it falls and will be followed only by the bond's maturity cash flow date.
- StartDate is a NINST-by-1 matrix for date when a bond actually starts (the date from which a bond cash flow is considered). To make an instrument forward-starting, specify this date as a future date. If you do not specify StartDate, the effective start date is the Settle date.
- Face is a NINST-by- 1 matrix for the face value. The default value is 100 .
- Options is a derivatives pricing options structure created with derivset.

Note The Settle date for every bond with embedded option is set to the ValuationDate of the HW tree; the bond's argument for Settle date is ignored.

\section*{Description}
[Price, PriceTree] = optmbndbyhw(HWTree, CouponRate, Settle, Maturity, OptSpec, Strike, ExerciseDates,'Name1', Value1, 'Name2', Value2, ...) prices bonds with embedded options by a HW interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and accrued interest, and a vector of observation times for each node. Within PriceTree:
- PriceTree. PTree contains the clean prices.
- PriceTree.AITree contains the accrued interest.
- PriceTree.tObs contains the observation times.

\section*{Examples Create a HWTree with the following data:}
```

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

```

Create a RateSpec:
```

RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates,'Compounding', Compounding, 'ValuationDate', ValuationDate);
Specify a TimeSpec:
HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

```

Specify a VolSpec:
```

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve);

```

Build a HWTree:
```

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

```

Compute the price of an American puttable bond that pays an annual coupon of \(5.25 \%\), matures on January 1, 2010, and is puttable from January 1, 2008 to January 1, 2010:
```

BondSettlement = 'jan-1-2007';
BondMaturity = 'jan-1-2010';
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put';
Strike = [100];
ExerciseDates = {'jan-1-2008' '01-Jan-2010'};
AmericanOpt = 1;
PricePutBondHW = optembndbyhw(HWTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)
PricePutBondHW =
102.8801

```

See Also
hwprice, hwtree, instoptembnd

\section*{optstockbybjs}

\section*{Purpose}

\section*{Arguments}

\section*{Description}

\section*{Examples}

Syntax \(\quad \begin{aligned} & \text { Price }=\text { optstockbybjs(RateSpec, StockSpec, Settle, Maturity, } \\ & \text { OptSpec, Strike) }\end{aligned}\)
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l}
Stock specification. See stockspec.
\end{tabular} \\
Settle & \begin{tabular}{l}
NINST-by-1 vector of settlement or trade dates.
\end{tabular} \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
Strike & NINST-by-1 vector of strike price values.
\end{tabular}

Price American options using Bjerksund-Stensland 2002 option pricing model
```

\

```
```

\

```

Price \(=\) optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes American option prices with continuous dividend yield using the Bjerksund-Stensland 2002 option pricing model.

Price is a NINST-by-1 vector of expected option prices.
Consider two American stock options (a call and a put) with an exercise price of \(\$ 100\). The options expire on April 1, 2008. Assume the underlying stock pays a continuous dividend yield of \(4 \%\) as of January 1,2008 . The stock has a volatility of \(20 \%\) per annum and the annualized continuously compounded risk-free rate is \(8 \%\) per annum. Using this data, calculate the price of the American call and put, assuming the following current prices of the stock: \(\$ 90\) (for the call) and \(\$ 120\) (for the put):
```

Settle = 'Jan-1-2008';
Maturity = 'April-1-2008';
Strike = 100;
AssetPrice = [90;120];
DivYield = 0.04;
Rate = 0.08;
Sigma = 0.20;

```

Define StockSpec and RateSpec:
```

StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

```

Define the option type:
```

OptSpec = {'call'; 'put'};

```

Compute the option prices using the Bjerksund-Stensland 2002 option pricing model:
```

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =
0.8420
0.1108

```

The first element of the Price vector represents the price of the call (\(\$ 0.84\)); the second element represents the price of the put option (\(\$ 0.11\)).

\author{
See Also
}
impvbybjs, intenvset, optstocksensbybjs, stockspec

\section*{optstockbyblk}

Purpose
Price options on futures using Black option pricing model
```

Syntax Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike)

```

\section*{Arguments}
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l}
Stock specification. See stockspec.
\end{tabular} \\
\begin{tabular}{l}
Settle
\end{tabular} & \begin{tabular}{l}
NINST-by-1 vector of settlement or trade dates.
\end{tabular} \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put '. \\
Strike & NINST-by-1 vector of strike price values.
\end{tabular}

\section*{Description Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes option prices on futures using the Black option pricing model.}

Price is a NINST-by-1 vector of expected option prices.

\section*{Examples}

Consider two European call options on a futures contract with exercise prices of \(\$ 20\) and \(\$ 25\) that expire on September 1, 2008. Assume that on May 1, 2008 the contract is trading at \(\$ 20\), and has a volatility of \(35 \%\) per annum. The risk-free rate is \(4 \%\) per annum. Using this data, calculate the price of the call futures options using the Black model:
```

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';

```
```

Maturity = 'Sep-01-08';
Create RateSpec and StockSpec:

```
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
 'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
 'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);
StockSpec = stockspec(Sigma, AssetPrice);
```

StockSpec = stockspec(Sigma, AssetPrice);

```

Define the call options:
```

OptSpec = {'call'};

```

Calculate the price using the Black option pricing model:
```

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike)
Price =
1.5903
0.3037

```

\section*{See Also}
impvbyblk, intenvset, optstocksensbyblk, stockspec

Purpose Price options using Black-Scholes option pricing model
```

Syntax Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike)

```

Arguments
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l}
Stock specification. See stockspec.
\end{tabular} \\
\begin{tabular}{l}
Settle
\end{tabular} & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put '. \\
Strike & NINST-by-1 vector of strike price values.
\end{tabular}

\section*{Description Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike) computes option prices using the Black-Scholes option pricing model.}

Price is a NINST-by-1 vector of expected option prices.

Note When using StockSpec with optstockbybls, you can modify StockSpec to handle other types of underliers when pricing instruments that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:
```

DivType = 'Continuous';
DivAmount = RateSpec.Rates;

```

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in StockSpec:
```

DivType = 'Continuous';
DivAmount = ForeignRate;

```
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.

\section*{Examples}

Consider two European options, a call and a put, with an exercise price of \(\$ 29\) on June 1, 2008. The options expire on May 1, 2008. Assume that the underlying stock for the call option provides a cash dividend of \(\$ 0.50\) on February 15, 2008. The underlying stock for the put option provides a continuous dividend yield of \(4.5 \%\) per annum. The stocks are trading at \(\$ 30\) and have a volatility of \(25 \%\) per annum. The annualized continuously compounded risk-free rate is \(5 \%\) per annum. Using this data, compute the price of the options using the Black-Scholes model:
```

Strike = 29;
AssetPrice = 30;
Sigma = .25;
Rates = 0.05;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';

```

Define RateSpec:
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);

```

Define StockSpec:
```

DividendType = {'cash';'continuous'};
DividendAmounts = [0.50; 0.045];
ExDividendDates = {'Feb-15-2008';NaN};
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts,...
ExDividendDates);

```

Price the call and the put options using the Black-Scholes model:
```

OptSpec = {'call'; 'put'};
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =
2.2030
1.2025

```

\section*{See Also}
impvbybls, intenvset, optstocksensbybls, stockspec

\section*{Purpose}

Price stock option from CRR tree
Syntax [Price, PriceTree] = optstockbycrr(CRRTree, OptSpec, Strike,

\section*{Arguments}

CRRTree Stock tree structure created by crrtree.
OptSpec Number of instruments (NINST)-by-1 cell array of strings 'call' or 'put'.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.

Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

American option: NINST-by-1 vector of strike price values for each option.

\section*{optstockbycrr}

Settle NINST-by-1 vector of settlement or trade dates.
ExerciseDates
NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

\section*{Description}

Examples
[Price, PriceTree] = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European, Bermuda, or American stock option.

Price is a NINST-by- 1 vector of expected option prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

Price a stock option using a CRR binomial tree.
Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock specification and time information needed to price the option.
load deriv.mat;

Set the required values. Other arguments will use defaults.
```

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2005';
Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
8.2863

```

See Also crrtree, instoptstock

Purpose

\section*{Arguments}

Syntax [Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec, Strike,
Price stock option from EQP binomial tree

OptSpec Number of instruments (NINST)-by-1 cell array of strings 'call' or 'put'.

Note The interpretation of the Strike and ExerciseDates arguments depends upon the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.

Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES) matrix of strike price values.

Each row is the schedule for one option. If an option has fewer than NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

American option: NINST-by-1 vector of strike price values for each option.

Settle NINST-by-1 vector of settlement or trade dates.
ExerciseDates
NINST-by-1 (European option) or NINST-by-NSTRIKES (Bermuda option) matrix of exercise dates. Each row is the schedule for one option. For a European option, there is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non- NaN date is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the underlying bond Settle and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument. The others may be omitted or passed as empty matrices [].

\section*{Description}
[Price, PriceTree] = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European/Bermuda or American stock option.

Price is a NINST-by- 1 vector of expected option prices at time 0 .
PriceTree is a tree structure with a vector of instrument prices at each node.

\section*{Examples Price a stock option using an EQP equity tree.}

Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock specification and time information needed to price the option.

\section*{load deriv.mat}

Set the required values. Other arguments will use defaults.
```

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003'
ExerciseDates = '01-Jan-2005';
Price = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ...
ExerciseDates)
Price =
8.4791

```

See Also eqptree, instoptstock

\section*{Purpose}

Price options on stocks using implied trinomial tree (ITT)
Syntax \(\quad \begin{aligned} & \text { [Price, PriceTree] }=\text { optstockbyitt(ITTTree, OptSpec, Strike, } \\ & \text { Settle, ExerciseDates, AmericanOpt) }\end{aligned}\)
Arguments

ITTTree Stock tree structure created by itttree.
OptSpec Number of instruments (NINST)-by-1 cell array of strings 'call' or 'put'.

Note The interpretation of the Strike and ExerciseDates arguments depends on the setting of the AmericanOpt argument. If AmericanOpt \(=0, \mathrm{NaN}\), or is unspecified, the option is a European or Bermuda option. If AmericanOpt \(=1\), the option is an American option.
\begin{tabular}{ll}
Strike & \begin{tabular}{l}
European option: NINST-by-1 vector of strike \\
price values.
\end{tabular} \\
\begin{tabular}{l}
Bermuda option: NINST by number of strikes \\
(NSTRIKES) matrix of strike price values.
\end{tabular} \\
Each row is the schedule for one option. If \\
an option has fewer than NSTRIKES exercise \\
opportunities, the end of the row is padded with \\
NaNs.
\end{tabular}\(\quad\)\begin{tabular}{l}
American option: NINST-by-1 vector of strike \\
price values for each option.
\end{tabular}

\section*{optstockbyitt}
\begin{tabular}{ll}
ExerciseDates & For a European or Bermuda option: \\
& NINST-by-1 (European option) or \\
NINST-by-NSTRIKES (Bermuda option) \\
matrix of exercise dates. Each row is the \\
schedule for one option. For a European option, \\
there is only one exercise date, the option expiry \\
date. \\
& For an American option: \\
& NINST-by-2 vector of exercise date boundaries. \\
For each instrument, the option can be exercised \\
on any coupon date between or including the pair \\
of dates on that row. If only one non-NaN date \\
is listed, or if ExerciseDates is NINST-by-1, the \\
option can be exercised between the underlying \\
bond Settle and the single listed exercise date.
\end{tabular}

Note Data arguments for optstockbyitt are NINST-by-1 vectors, scalar, or empty. Fill unspecified entries in vectors with NaN. Only one data argument is required to create the instrument; the others may be omitted or passed as empty matrices [].

\section*{Description}
[Price, PriceTree] = optstockbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt) computes the price of a European/Bermuda or American stock option.

Price is a NINST-by- 1 vector of expected option prices at time 0 .

PriceTree is a tree structure with a vector of instrument prices at each node.

Note The Settle date for every option is set to the ValuationDate of the stock tree. The option argument, Settle, is ignored.

Examples Price a stock option using an ITT equity tree.
Load the file deriv.mat which provides the ITTTree. The ITTTree structure contains the stock specification and time information needed to price the option.
```

load deriv.mat

```

Set the required values. Other arguments will use defaults.
```

OptSpec = 'Put';
Strike = 80;
Settle = '01-Jan-2006';
ExerciseDates = ' 01-Jan-2010 ';
Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle,ExerciseDates)
Price =
10.68

```

\section*{See Also}
instoptstock, itttree, stockoptspec

\section*{optstockbyrgw}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Calculate American call option prices using Roll-Geske-Whaley option \\
pricing model
\end{tabular} \\
Syntax & \begin{tabular}{l}
Price \(=\) optstockbyrgw(RateSpec, StockSpec, Settle, \\
Maturity, Strike)
\end{tabular}
\end{tabular}

\section*{Arguments}
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & Stock specification. See stockspec. \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
Strike & NINST-by-1 vector of strike price values.
\end{tabular}

\section*{Description Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike) computes the American call option prices using the Roll-Geske-Whaley option pricing model. \\ Price is a NINST-by-1 vector of expected call option prices.}

Note optstockbyrgw computes prices of American calls with a single cash dividend using the Roll-Geske-Whaley option pricing model.

\footnotetext{
Examples Consider an American call option with an exercise price of \(\$ 22\) that expires on February 1, 2009. The underlying stock is trading at \(\$ 20\) on June 1, 2008 and has a volatility of \(20 \%\) per annum. The annualized continuously compounded risk-free rate is \(6.77 \%\) per annum. The stock pays a single dividend of \(\$ 2\) on September 1, 2008. Using this data,
}
compute price of the American call option using the Roll-Geske-Whaley option pricing model:
```

Settle = 'Jun-01-2008';
Maturity = 'Feb-01-2009';
AssetPrice = 20;
Strike = 22;
Sigma = 0.2;
Rate = 0.0677;

```

Define StockSpec and RateSpec:
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 0);
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

```

Compute the price of the American call :
```

Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity,Strike)
Price =
0.3359

```

\section*{See Also}
impvbyrgw, intenvset, optstocksensbyrgw, stockspec

\section*{optstocksensbybjs}

\section*{Purpose}

Syntax
PriceSens = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...)

\section*{Arguments}
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l}
Stock specification. See stockspec.
\end{tabular} \\
Settle & \begin{tabular}{l}
NINST-by-1 vector of settlement or trade dates.
\end{tabular} \\
Maturity & \begin{tabular}{l}
NINST-by-1 vector of maturity dates.
\end{tabular} \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put '. \\
Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. \\
OutSpec
\end{tabular} \\
& \begin{tabular}{l}
(Optional) All optional inputs are specified as \\
matching parameter name/value pairs. The \\
parameter name is specified as a character string, \\
followed by the corresponding parameter value.
\end{tabular} \\
& \begin{tabular}{l}
Parameter name/value pairs may be specified \\
in any order; names are case-insensitive and \\
partial string matches are allowed provided no \\
ambiguities exist. Valid parameter names are:
\end{tabular}
\end{tabular}
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = \{'Price'; 'Lamba'; 'Rho' \(\}\) specifies that the output should be Price, Lambda, and Rho, in that order.

> To invoke from a function: [Price, Lambda, Rho] = optstocksensbybjs(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})

> OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.
- Default is OutSpec = \{'Price' \(\}\).

\section*{Description}

\section*{Examples}

PriceSens = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes American option prices and sensitivities using the Bjerksund-Stensland 2002 option pricing model.
optstocksensbybjs can be used to compute six sensitivities for the Bjerksund-Stensland 2002 model: delta, gamma, vega, lambda, rho, and theta. This function is also capable of returning the price of the option. The selection of output parameters and their order is determined by the optional input parameter OutSpec. This parameter is a cell array of strings, each one specifying a desired output parameter. The order in which these output parameters are returned by the function is the same as the order of the strings contained in OutSpec.

PriceSens is a NINST-by-1 vector of expected prices or sensitivities values.

Consider four American put options with an exercise price of \(\$ 100\). The options expire on October 1, 2008. Assume the underlying stock pays a continuous dividend yield of \(4 \%\) and has a volatility of \(40 \%\) per annum. The annualized continuously compounded risk-free rate is \(8 \%\) per annum. Using this data, calculate the delta, gamma, and price of the American put options, assuming the following current prices of the stock on July 1, 2008: \(\$ 90, \$ 100, \$ 110\) and \(\$ 120\) :
```

Settle = 'July-1-2008';
Maturity = 'October-1-2008';
Strike = 100;
AssetPrice = [90;100;110;120];
Rate = 0.08;
Sigma = 0.40;
DivYield = 0.04;

```

Define StockSpec and RateSpec:
```

StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

```

Define the option type:
```

OptSpec = {'put'};

```

Compute delta, gamma, and price of the put options using the Bjerksund-Stensland 2002 option pricing model:
```

OutSpec = {'Delta', 'Gamma', 'Price'};
[Delta, Gamma, Price] = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, 'OutSpec', OutSpec)
Delta =
0.7210
0.5179
0.3321
0.1925
Gamma =

```
0.0176
0.0202
0.0182
0.0136

Price \(=\)
12.9467
7.4571
3.9539
1.9495

See Also
impvbybjs, intenvset, optstockbybjs, stockspec

\section*{optstocksensbyblk}

Purpose

Syntax

\section*{Arguments}

Calculate option prices and sensitivities on futures using Black pricing model

PriceSens = optstocksensbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...)

RateSpec The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
OutSpec (Optional) All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist. Valid parameter names are:
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = \{'Price'; 'Lamba'; 'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order.

> To invoke from a function: [Price, Lambda, Rho] = optstocksensbyblk(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})

> OutSpec \(=\) \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec \(=\) \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.
- Default is OutSpec \(=\{\) 'Price' \(\}\).

\section*{Description PriceSens = optstocksensbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes option prices and sensitivities on futures using the Black pricing model. \\ PriceSens is a NINST-by-1 vector of expected future prices or sensitivities values. \\ Examples \\ Consider a European put option on a futures contract with an exercise price of \(\$ 60\) that expires on June 30, 2008. On April 1, 2008 the underlying stock is trading at \(\$ 58\) and has a volatility of \(9.5 \%\) per annum. The annualized continuously compounded risk-free rate is \(5 \%\) per annum. Using this data, compute delta, gamma, and the price of the put option.}
```

AssetPrice = 58;
Strike = 60;
Sigma = .095;
Rates = 0.05;
Settle = 'April-01-08';
Maturity = 'June-30-08';

```

Create RateSpec and StockSpec:
```

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...

```

\section*{optstocksensbyblk}
```

Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);
StockSpec = stockspec(Sigma, AssetPrice);

```

Define the options:
```

OptSpec = {'put'};

```

Compute Delta, Gamma and Price for the European put option:
```

OutSpec = {'Delta','Gamma','Price'};
[Delta, Gamma, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)
Delta =
-0.7469
Gamma =
0.1130
Price =
2.3569

```
impvbyblk, intenvset, optstockbyblk, stockspec

\section*{Purpose}

Syntax

Arguments

Calculate option prices and sensitivities using Black-Scholes option pricing model
```

PriceSens = optstocksensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, 'Name1', Value1...)

```
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & \begin{tabular}{l}
Stock specification. See stockspec.
\end{tabular} \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
OptSpec & NINST-by-1 cell array of strings 'call' or 'put '. \\
Strike & \begin{tabular}{l}
NINST-by-1 vector of strike price values. \\
OutSpec
\end{tabular} \begin{tabular}{l}
(Optional) All optional inputs are specified as \\
matching parameter name/value pairs. The \\
parameter name is specified as a character string, \\
followed by the corresponding parameter value. \\
\\
\\
\\
\\
Parameter name/value pairs may be specified \\
in any order; names are case-insensitive and \\
partial string matches are allowed provided no \\
ambiguities exist. Valid parameter names are:
\end{tabular}
\end{tabular}
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = \{'Price'; 'Lamba'; 'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order.

\section*{optstocksensbybls}

> To invoke from a function: [Price, Lambda, Rho] = optstocksensbybls(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\})

> OutSpec \(=\) \{'All' \(\}\) specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.
- Default is OutSpec \(=\{\) 'Price' \(\}\).

\section*{Description PriceSens = optstocksensbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes option prices and sensitivities using the Black-Scholes option pricing model. \\ PriceSens is a NINST-by-1 vector of expected prices or sensitivities values.}

Note When using StockSpec with optstocksensbybls, you can modify StockSpec to handle other types of underliers when pricing instruments that use the Black-Scholes model.

When pricing Futures (Black model), enter the following in StockSpec:
```

DivType = 'Continuous';
DivAmount = RateSpec.Rates;

```

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in StockSpec:
```

DivType = 'Continuous';
DivAmount = ForeignRate;

```
where ForeignRate is the continuously compounded, annualized risk free interest rate in the foreign country.
```

Examples Consider a European call and put options with an exercise price of $\$ 30$ that expires on June 1, 2008. The underlying stock is trading at $\$ 30$ on January 1, 2008 and has a volatility of $30 \%$ per annum. The annualized continuously compounded risk-free rate is $5 \%$ per annum. Using this data, compute the delta, gamma, and price of the options using the Black-Scholes model.

```
```

AssetPrice = 30;

```
AssetPrice = 30;
Strike = 30;
Strike = 30;
Sigma = .30;
Sigma = .30;
Rates = 0.05;
Rates = 0.05;
Settle = 'January-01-2008';
Settle = 'January-01-2008';
Maturity = 'June -01-2008';
Maturity = 'June -01-2008';
Define RateSpec and StockSpec :
```

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
```

```
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
```

```
Maturity, 'Rates', Rates, 'Compounding',-1, 'Basis', 1);
StockSpec = stockspec(Sigma, AssetPrice);
```

Define the options:

```
OptSpec = {'call', 'put'};
```

Compute delta, gamma, and price for the European options:

```
OutSpec = {'Delta','Gamma','Price'};
[Delta, Gamma, Price] = optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)
Delta =
 0.5810
 -0.4190
Gamma =
 0.0673
 0.0673
Price =
 2.6126
 1.9941
```

\author{
Purpose Calculate American call option prices and sensitivities using Roll-Geske-Whaley option pricing model <br> ```
Syntax PriceSens = optstocksensbyrgw(RateSpec, StockSpec, Settle, <br> Maturity, OptSpec, Strike, 'Name1', Value1...)

```
}

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline RateSpec & The annualized continuously compounded rate term structure. For information on the interest rate specification, see intenvset. \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by- 1 vector of maturity dates. \\
\hline OptSpec & NINST-by-1 cell array of strings 'call' or 'put'. \\
\hline Strike & NINST-by-1 vector of strike price values. \\
\hline OutSpec & \begin{tabular}{l}
(Optional) All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist. Valid parameter names are: \\
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.
\end{tabular} \\
\hline & For example, OutSpec = \{'Price'; 'Lamba 'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order. \\
\hline
\end{tabular}

\section*{optstocksensbyrgw}

> To invoke from a function: [Price, Lambda, Rho] = optstocksensbyrgw (..., 'OutSpec', \(\{\) 'Price', 'Lamba', 'Rho' \(\}\))
> OutSpec = \{'All' \(\}\) specifies that the output should be Delta, Gamma, vega, Lambda, RRo, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \(\{\) 'eelta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price' \(\} ;\);.
- Default is OutSpec = \{'Price' \(\}\).

\section*{Description \\ PriceSens = optstocksensbyrgw(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike, 'Name1', Value1...) computes American call option prices and sensitivities using the Roll-Geske-Whaley option pricing model. \\ PriceSens is a NINST-by-1 vector of expected prices or sensitivities values. \\ Examples \\ Consider an American stock option with an exercise price of \(\$ 82\) on January 1, 2008 that expires on May 1, 2008. Assume the underlying stock pays dividends of \(\$ 4\) on April 1, 2008. The stock is trading at \(\$ 80\) and has a volatility of \(30 \%\) per annum. The risk-free rate is \(6 \%\) per annum. Using this data, calculate the price and the value of delta and gamma of the American call using the Roll-Geske-Whaley option pricing model:}
```

AssetPrice = 80;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';
Strike = 82;
Rate = 0.06;
Sigma = 0.3;
DivAmount = 4;

```
```

DivDate = 'Apr-01-2008';

```

Define StockSpec and RateSpec:
```

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);

```

Define OutSpec:
```

OutSpec = {'Price', 'Delta', 'Gamma'};

```

Calculate the call Price, Delta, and Gamma:
[Price, Delta, Gamma] = optstocksensbyrgw(RateSpec, StockSpec, Settle,...
Maturity, Strike,'OutSpec', OutSpec)
Price =
 4.3860
Delta =
 0.5022
Gamma =
 0.0336

See Also
impvbyrgw, intenvset, optstockbyrgw, stockspec

Purpose
Discount factors from interest rates
Syntax
Usage 1: Interval points are input as times in periodic units. Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes, Basis, EndMonthRule)

Usage 2: ValuationDate is passed and interval points are input as dates.
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate, Basis, EndMonthRule)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Compounding & Scalar value representing the rate at which the input zero rates were compounded when annualized. This argument determines the formula for the discount factors: \\
\hline & Compounding \(=1,2,3,4,6,12\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the compounding frequency, \(Z\) is the zero rate, and T is the time in periodic units; for example, \(\mathrm{T}=\) \(F\) is 1 year. \\
\hline & Compounding \(=365\) \\
\hline & Disc \(=(1+Z / F)^{\wedge}(-T)\), where \(F\) is the number of days in the basis year and \(T\) is a number of days elapsed computed by basis. \\
\hline & Compounding \(=-1\) \\
\hline & Disc \(=\exp (-T * Z)\), where \(T\) is time in years. \\
\hline Rates & Number of points (NPOINTS) by number of curves (NCURVES) matrix of rates in decimal form. For example, \(5 \%\) is 0.05 in Rates. Rates are the yields over investment intervals from \\
\hline
\end{tabular}
\(\left.\begin{array}{ll} & \begin{array}{l}\text { StartTimes, when the cash flow is valued, to } \\ \text { EndTimes, when the cash flow is received. }\end{array} \\ \text { NPOINTS-by-1 vector or scalar of times in periodic } \\ \text { units ending the interval to discount over. } \\ \text { EndTimes } & \text { (Optional) NPOINTS-by-1 vector or scalar of times } \\ \text { in periodic units starting the interval to discount } \\ \text { over. Default = 0. }\end{array}\right\}\)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. \(1=\) set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

\section*{Description}

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes, Basis, EndMonthRule) and [Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, EndDates, StartDates, ValuationDate, Basis, EndMonthRule) convert interest rates to cash flow discounting factors. rate2disc computes the discounts over a series of NPOINTS time intervals given the annualized yield over those intervals. NCURVES different rate curves can be translated at once if they have the same time structure. The time intervals can represent a zero curve or a forward curve.

Disc is an NPOINTS-by-NCURVES column vector of discount factors in decimal form representing the value at time StartTime of a unit cash flow received at time EndTime.

StartTimes is an NPOINTS-by-1 column vector of times starting the interval to discount over, measured in periodic units.

EndTimes is an NPOINTS-by- 1 column vector of times ending the interval to discount over, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. The arguments otherwise contain values, T , computed from SIA semiannual time factors, Tsemi, by the formula T = Tsemi/2*F, where \(F\) is the compounding frequency.

You can specify the investment intervals either with input times (Usage 1) or with input dates (Usage 2). Entering ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

\section*{Examples}

Example 1. Compute discounts from a zero curve at 6 months, 12 months, and 24 months. The times to the cash flows are 1,2 , and 4 . You are computing the present value (at time 0) of the cash flows.
```

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)
Disc =
0.9756
0.9426
0.8799

```

Example 2. Compute discounts from a zero curve at 6 months, 12 months, and 24 months. Use dates to specify the ending time horizon.
```

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97';
Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)
Disc =
0.9756
0.9426
0.8799

```

Example 3. Compute discounts from the 1-year forward rates beginning now, in 6 months, and in 12 months. Use monthly compounding. The times to the cash flows are \(12,18,24\), and the forward times are \(0,6,12\).

Compounding = 12;
Rates = [0.05; 0.04; 0.06];
EndTimes = [12; 18; 24];
StartTimes = [0; 6; 12];
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
Disc =
0.9513
0.9609
0.9419

See Also
disc2rate, ratetimes

\section*{Purpose}

Change time intervals defining interest-rate environment

\section*{Syntax}
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes) [Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)

Usage 1: ValuationDate not passed; third through sixth arguments are interpreted as times.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes)

Usage 2: ValuationDate passed and interval points input as dates. [Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline & Disc \(=\exp \left(-T^{*} Z\right)\), where \(T\) is time in years. \\
\hline RefRates & NREFPTS-by-NCURVES matrix of reference rates in decimal form. RefRates are the yields over investment intervals from RefStartTimes, when the cash flow is valued, to RefEndTimes, when the cash flow is received. \\
\hline RefEndTimes & NREFPTS-by- 1 vector or scalar of times in periodic units ending the intervals corresponding to RefRates. \\
\hline RefStartTimes & (Optional) NREFPTS-by-1 vector or scalar of times in periodic units starting the intervals corresponding to RefRates. Default \(=0\). \\
\hline EndTimes & NPOINTS-by- 1 vector or scalar of times in periodic units ending the interval to discount over. \\
\hline StartTimes & (Optional) NPOINTS-by-1 vector or scalar of times in periodic units starting the interval to discount over. Default \(=0\). \\
\hline RefEndDates & NREFPTS-by-1 vector or scalar of serial dates ending the intervals corresponding to RefRates. \\
\hline RefStartDates & (Optional) NREFPTS-by-1 vector or scalar of serial dates starting the intervals corresponding to RefRates. Default = ValuationDate. \\
\hline EndDates & NPOINTS-by-1 vector or scalar of serial maturity dates ending the interval to discount over. \\
\hline
\end{tabular}
\begin{tabular}{ll}
StartDates & \begin{tabular}{l}
(Optional) NPOINTS-by-1 vector or scalar of serial \\
dates starting the interval to discount over. \\
StartDates must be earlier than EndDates.
\end{tabular} \\
ValuationDate & \begin{tabular}{l}
Default = ValuationDate.
\end{tabular} \\
\begin{tabular}{l}
Scalar value in serial date number form \\
representing the observation date of the \\
investment horizons entered in StartDates and
\end{tabular} \\
& \begin{tabular}{l}
EndDates. Required in Usage 2. Omitted or \\
passed as an empty matrix to invoke Usage 1.
\end{tabular}
\end{tabular}

\section*{Description}
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes) and [Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate) change time intervals defining an interest-rate environment.
ratetimes takes an interest-rate environment defined by yields over one collection of time intervals and computes the yields over another set of time intervals. The zero rate is assumed to be piece-wise linear in time.

Rates is an NPOINTS-by-NCURVES matrix of rates implied by the reference interest-rate structure and sampled at new intervals.

StartTimes is an NPOINTS-by- 1 column vector of times starting the new intervals where rates are desired, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the new intervals, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. The arguments otherwise contain values, T , computed from SIA semiannual time factors, Tsemi, by the formula \(T=\) Tsemi/2 * F, where \(F\) is the compounding frequency.

You can specify the investment intervals either with input times (Usage 1) or with input dates (Usage 2). Entering the argument ValuationDate invokes the date interpretation; omitting ValuationDate invokes the default time interpretations.

\section*{Examples}

Example 1. The reference environment is a collection of zero rates at 6,12 , and 24 months. Create a collection of 1 -year forward rates beginning at 0,6 , and 12 months.
```

RefRates = [0.05; 0.06; 0.065];
RefEndTimes = [1; 2; 4];
StartTimes = [0; 1; 2];
EndTimes = [2; 3; 4];
Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,...
StartTimes)
Rates =
0.0600
0.0688
0.0700

```

Example 2. Interpolate a zero yield curve to different dates. Zero curves start at the default date of ValuationDate.
```

RefRates = [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates = [730241; 730486];
ValuationDate = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [],...
ValuationDate)
Rates =
0.0520
0.0520

```
See Also
disc2rate, rate2disc

\section*{Purpose Specify European stock option structure}
```

Syntax
[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle,
Maturity, OptSpec, InterpMethod)

```

\section*{Arguments}

OptPrice NINST-by-1 vector of European option prices.
Strike NINST-by-1 vector of strike prices.
Settle Scalar date marking the settlement date.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
InterpMethod (Optional) Method of interpolation to use for option prices. InterpMethod is [\{'price'\} | 'vol']. The default is 'price'. By specifying 'vol', implied volatilities will be used for interpolation purposes. The interpolated values will then be used to calculate the implicit interpolated prices.

\section*{Description \\ [StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec, InterpMethod) creates a structure encapsulating the properties of a stock option structure. \\ Examples \\ Consider the following data quoted from liquid options in the market with varying strikes and maturity. You specify these parameters in MATLAB as follows:}
```

Settle = '01/01/06';
Maturity = ['07/01/06';
'07/01/06';
'07/01/06';
'07/01/06';

```
```

    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];
    Strike = [113;
101;
100;
88;
128;
112;
100;
78;
144;
112;
100;
69;
162;
112;
100;
61];
OptPrice =[
0;
4.807905472659144;
1.306321897011867;
0.048039195057173;
0;
2.310953054191461;
1.421950392866235;

```
```

    0.020414826276740;
                        0;
    5.091986935627730;
    1.346534812295291;
    0.005101325584140;
            0;
    8.047628153217246;
    1.219653432150932;
    0.001041436654748];
    OptSpec = { 'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put';
'call';
'call';
'put';
'put'};
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
StockOptSpec =
FinObj: 'StockOptSpec'
OptPrice: [16x1 double]
Strike: [16x1 double]
Settle: 732678
Maturity: [16x1 double]

```

\section*{stockoptspec}

OptSpec: \{16x1 cell\}
InterpMethod: 'price'

\author{
See Also \\ ittprice, itttree, stockspec
}

\section*{Purpose Create stock structure}

\author{
Syntax StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates)
}

\section*{Arguments}
\begin{tabular}{ll}
Sigma & \begin{tabular}{l}
NINST-by-1 decimal annual price volatility of \\
underlying security.
\end{tabular} \\
AssetPrice & \begin{tabular}{l}
NINST-by-1 vector of underlying asset price \\
values at time 0.
\end{tabular} \\
DividendType & \begin{tabular}{l}
(Optional) NINST-by-1 cell array of strings \\
specifying each stock's dividend type.
\end{tabular} \\
\begin{tabular}{l}
Dividend type must be either cash for actual \\
dollar dividends, constant for constant \\
dividend yield, or continuous for continuous \\
dividend yield. This function does not handle \\
stock option dividends.
\end{tabular}
\end{tabular}

Note Dividends are assumed to be paid in cash. Noncash dividends (stock) are not allowed. When combining two or more type of dividends, shorter rows should be padded with the value NaN.
\begin{tabular}{ll}
DividendAmounts & \begin{tabular}{l}
(Optional) NINST-by-NDIV matrix of cash \\
dividends or NINST-by-1 vector representing \\
a constant or continuous annualized dividend \\
yield.
\end{tabular} \\
ExDividendDates & \begin{tabular}{l}
(Optional) NINST-by-NDIV matrix of \\
ex-dividend dates for cash type or NINST-by-1 \\
vector of ex-dividend dates for constant \\
dividend type. For continuous dividend \\
type, this argument should be ignored.
\end{tabular}
\end{tabular}

\section*{Description}

Examples

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates) creates a MATLAB structure containing the properties of a stock.

Example 1. Consider a stock that provides four cash dividends of \(\$ 0.50\) on January 3, 2008, April 1, 2008, July 5, 2008 and October 1, 2008. The stock is trading at \(\$ 50\), and has a volatility of \(20 \%\) per annum. Using this data, create the structure StockSpec:
```

AssetPrice = 50;
Sigma = 0.20;
DividendType = {'cash'};
DividendAmounts = [0.50, 0.50, 0.50, 0.50];
ExDividendDates = {'03-Jan-2008', '01-Apr-2008', '05-July-2008', '01-Oct-2008'};
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates)
StockSpec =
FinObj: 'StockSpec'
Sigma: 0. }200
AssetPrice: 50
DividendType: {'cash'}
DividendAmounts: [0.5000 0.5000 0.5000 0.5000]

```

Examine the StockSpec structure:
```

datedisp(StockSpec.ExDividendDates)
03-Jan-2008 01-Apr-2008 05-Jul-2008 01-Oct-2008
StockSpec.DividendType
ans =
'cash'

```

The StockSpec structure encapsulates the information of the stock and its four cash dividends.

Example 2. Consider two stocks that are trading at \(\$ 40\) and \(\$ 35\). The first one provides two cash dividends of \(\$ 0.25\) on March 1, 2008 and June 1, 2008. The second stock provides a continuous dividend yield of \(3 \%\). The stocks have a volatility of \(30 \%\) per annum. Using this data, create the structure StockSpec:
```

AssetPrice = [40; 35];
Sigma = .30;
DividendType = {'cash'; 'continuous'};
DividendAmount = [0.25, 0.25 ; 0.03 NaN];
DividendDate1 = 'March-01-2008';
DividendDate2 = 'Jun-01-2008';
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmount,...
{ DividendDate1, DividendDate2 ; NaN NaN})
StockSpec =
FinObj: 'StockSpec'
Sigma: [2x1 double]
AssetPrice: [2\times1 double]

```
```

    DividendType: {2x1 cell}
    DividendAmounts: [2x2 double]
    ExDividendDates: [2x2 double]
    Examine the StockSpec structure:
datedisp(StockSpec.ExDividendDates)
01-Mar-2008 01-Jun-2008
NaN
NaN
StockSpec.DividendType
ans =
'cash'
'continuous'

```

The StockSpec structure encapsulates the information of the two stocks and their dividends.

\section*{See Also}
crrprice, crrtree, intenvset, optstockbybjs, optstockbyblk, optstockbybls, optstockbyrgw

\section*{Purpose}

Calculate price of supershare digital options using Black-Scholes model

\author{
Syntax \\ Price = supersharebybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, StrikeLow, StrikeHigh)
}

\section*{Arguments}

\section*{Description}

\section*{Examples}
\begin{tabular}{ll}
RateSpec & \begin{tabular}{l}
The annualized, continuously compounded rate \\
term structure. For information on the interest \\
rate specification, see intenvset.
\end{tabular} \\
StockSpec & Stock specification. See stockspec. \\
Settle & NINST-by-1 vector of settlement or trade dates. \\
Maturity & NINST-by-1 vector of maturity dates. \\
StrikeLow & NINST-by-1 vector of low strike price values.
\end{tabular}

StrikeHigh NINST-by-1 vector of high strike price values.

Price = supersharebybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, StrikeLow, StrikeHigh) computes supershare digital option prices using the Black-Scholes model.

Price is a NINST-by-1 vector of expected option prices.
Consider a supershare based on a portfolio of nondividend paying stocks with a lower strike of 350 and an upper strike of 450 . The value of the portfolio on November 1, 2008 is 400 . The risk-free rate is \(4.5 \%\) and the volatility is \(18 \%\). Using this data, calculate the price of the supershare option on February 1, 2009.

Create the RateSpec:
```

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';

```
```

Rates = 0.045;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

```

Define the StockSpec:
```

AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

```

Define the high and low strike points:
```

StrikeLow = 350;

```
StrikeHigh = 450;

Calculate the price:
Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,... StrikeLow, StrikeHigh)

Pssh =
0.9411

See Also
assetbybls, cashbybls, gapbybls, supersharesensbybls

\section*{Purpose}

Syntax
PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh) PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh, OutSpec)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline RateSpec & The annualized, continuously compounded rate term structure. For information on the interest rate specification, see intenvset. \\
\hline StockSpec & Stock specification. See stockspec. \\
\hline Settle & NINST-by-1 vector of settlement or trade dates. \\
\hline Maturity & NINST-by-1 vector of maturity dates. \\
\hline StrikeLow & NINST-by-1 vector of low strike price values. \\
\hline StrikeHigh & NINST-by-1 vector of high strike price values. \\
\hline OutSpec & \begin{tabular}{l}
(Optional) All optional inputs are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. You can specify parameter name/value pairs in any order. Names are case-insensitive and partial string matches are allowed provided no ambiguities exist. Valid parameter names are: \\
- NOUT-by-1 or 1-by-NOUT cell array of strings indicating the nature and order of the outputs for the function. Possible values are 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.
\end{tabular} \\
\hline
\end{tabular}

> For example, OutSpec = \{'Price'; 'Lamba'; 'Rho'\} specifies that the output should be Price, Lambda, and Rho, in that order.
> To invoke from a function: [Price, Lambda, Rho] = supersharesensbybls(..., 'OutSpec', \{'Price', 'Lamba', 'Rho'\}) OutSpec = \{'All'\} specifies that the output should be Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as OutSpec = \{'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', 'Price'\};.
> - Default is OutSpec = \{'Price'\}.

\section*{Description}

\section*{Examples}

PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh) computes supershare option prices using the Black-Scholes option pricing model.

PriceSens = supersharesensbybls(RateSpec, StockSpec, Settle, Maturity, StrikeLow, StrikeHigh, OutSpec) includes an OutSpec argument defined as parameter/value pairs, and computes supershare option prices and sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and sensitivities.

Consider a supershare based on a portfolio of nondividend paying stocks with a lower strike of 350 and an upper strike of 450 . The value of the portfolio on November 1, 2008 is 400 . The risk-free rate is \(4.5 \%\) and the volatility is \(18 \%\). Using this data, calculate the price and sensitivity of the supershare option on February 1, 2009.

Create the RateSpec:
```

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';
Rates = 0.045;
Basis = 1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

```

Define the StockSpec:
```

AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

```

Define the high and low strike points:
```

StrikeLow = 350;
StrikeHigh = 450;

```

Calculate the price:
```

Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)
Pssh =
0.9411

```

Compute the delta and theta of the supershare option:
```

OutSpec = { 'delta';'theta'};
[Delta, Theta]= supersharesensbybls(RateSpec, StockSpec, Settle,...
Maturity, StrikeLow, StrikeHigh, 'OutSpec', OutSpec)
Delta =
-0.0010

```

\section*{Theta =}
\(-1.0102\)

See Also supersharebybls

\section*{Purpose}

Price swap instrument from BDT interest-rate tree
Syntax
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, Options, EndMonthRule)

\section*{Arguments}
\begin{tabular}{ll}
BDTTree & Interest-rate tree structure created by bdttree. \\
LegRate & \begin{tabular}{l}
Number of instruments (NINST)-by-2 matrix, with \\
each row defined as:
\end{tabular} \\
& \begin{tabular}{l}
[CouponRate Spread] or [Spread CouponRate] \\
CouponRate is the decimal annual rate. Spread is the \\
number of basis points over the reference rate. The \\
first column represents the receiving leg, while the \\
second column represents the paying leg.
\end{tabular} \\
Settle & \begin{tabular}{l}
Settlement date. NINST-by-1 vector of serial date \\
numbers or date strings. Settle must be earlier than
\end{tabular} \\
Maturity. \\
Maturity & \begin{tabular}{l}
Maturity date. NINST-by-1 vector of dates \\
representing the maturity date for each swap.
\end{tabular} \\
LegRet & \begin{tabular}{l}
(Optional) NINST-by-2 matrix representing the reset \\
frequency per year for each swap. Default = [1 1].
\end{tabular}
\end{tabular}

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- 0 = actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- \(7=\) actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default \(=100\).

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is [10] for each instrument.
\[
\begin{array}{ll}
\text { Options } & \begin{array}{l}
\text { (Optional) Derivatives pricing options structure } \\
\text { created with derivset. }
\end{array} \\
\text { EndMonthRule } & \text { (Optional) NINST-by-1 vector representing the } \\
& \text { End-of-month rule. Default = 1. }
\end{array}
\]

The Settle date for every swap is set to the ValuationDate of the BDT tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially 0 . To do this enter CouponRate as NaN.

\section*{Description}
[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) computes the price of a swap instrument from a BDT interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0.

PriceTree is a tree structure with a vector of the swap values at each node.

CFTree is a tree structure with a vector of the swap cash flows at each node. This structure contains only NaNs because with binomial recombining trees, cash flows cannot be computed accurately at each node of a tree.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. SwapRate is padded with NaN for those instruments in which CouponRate is not set to NaN.

\section*{Examples}

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is \(\$ 100\). The values for the remaining arguments are:
- Coupon rate for fixed leg: 0.15 (\(15 \%\))
- Spread for floating leg: 10 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.
```

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

```

Price the swap using the BDTTree included in the MAT-file deriv.mat. BDTTree contains the time and forward-rate information needed to price the instrument.
```

load deriv.mat;

```

Use swapbybdt to compute the price of the swap.
```

Price = swapbybdt(BDTTree, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)
Price =

```
 7.4222

Example 2. Using the previous data, calculate the swap rate, the coupon rate for the fixed leg such that the swap price at time \(=0\) is zero.
```

LegRate = [NaN 20];

```
```

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
-1.4211e-014
PriceTree =
FinObj: 'BDTPriceTree'
tObs: [00 1 2 2 3 4]
PTree: {1x5 cell}
CFTree =
FinObj: 'BDTCFTree'
tObs: [00 1 2 2 3 4]
CFTree: {[NaN] [NaN NaN] [NaN NaN NaN] [NaN NaN NaN NaN] ...}
SwapRate =
0.1205

```

See Also bdttree, capbybdt, cfbybdt, floorbybdt

Purpose Price swap instrument from Black-Karasinski interest-rate tree

\author{
Syntax \\ [Price, PriceTree, CFTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule)
}

\section*{Arguments}
\(\left.\begin{array}{ll}\text { BKTree } & \text { Interest-rate tree structure created by bktree. } \\
\text { LegRate } & \begin{array}{l}\text { Number of instruments (NINST)-by-2 matrix, with } \\
\text { each row defined as: }\end{array} \\
& \text { [CouponRate Spread] or [Spread CouponRate] } \\
\text { CouponRate is the decimal annual rate. Spread is the } \\
\text { number of basis points over the reference rate. The } \\
\text { first column represents the receiving leg, while the } \\
\text { second column represents the paying leg. }\end{array}\right\}\)\begin{tabular}{l}
Settlement date. NINST-by-1 vector of serial date \\
Settle \\
numbers or date strings. Settle must be earlier than \\
Maturity. \\
LegReset \\
\end{tabular} \begin{tabular}{l}
Maturity date. NINST-by-1 vector of dates \\
representing the maturity date for each swap. \\
(Optional) NINST-by-2 matrix representing the reset \\
frequency per year for each swap. Default = [1 1].
\end{tabular}

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- \(0=\) actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default \(=100\).

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is [1 0] for each instrument.
\[
\begin{array}{ll}
\text { Options } & \text { (Optional) Derivatives pricing options structure } \\
\text { created with derivset. } \\
\text { EndMonthRule } & \text { (Optional) NINST-by-1 vector representing the } \\
& \text { End-of-month rule. Default =1. }
\end{array}
\]

The Settle date for every swap is set to the ValuationDate of the BK tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially zero. To do this enter CouponRate as NaN.

\section*{Description}

\section*{Examples}
[Price, PriceTree, CFTree, SwapRate] = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) computes the price of a swap instrument from a Black-Karasinski interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0 .

PriceTree is the tree structure with a vector of the swap values at each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN.

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is \(\$ 100\). The values for the remaining arguments are:
- Coupon rate for fixed leg: 0.15 (\(15 \%\))
- Spread for floating leg: 10 basis points
- Swap settlement date: Jan. 01, 2005
- Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.
```

Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

```

Price the swap using the BKTree included in the MAT-file deriv.mat. The BKTree structure contains the time and forward-rate information needed to price the instrument.
```

load deriv.mat;

```

Use swapbybk to compute the price of the swap.
```

Price = swapbybk(BKTree, LegRate, Settle, Maturity, LegReset,...
Basis, Principal, LegType)
Price =
39.1827

```

Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time \(=0\) is zero.
```

LegRate = [NaN 20];
[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =

```
```

                        0
    PriceTree =
FinObj: 'BKPriceTree
PTree: {1x5 cell}
tObs: [00 1 2 2 3 4]
Connect: {[2] [2 3 3 4] [2 2 2 3 4 4 4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
SwapRate =
0.0438

```

See Also bktree, bondbybk, capbybk, fixedbybk, floorbybk

\section*{Purpose}

Price swap instrument from HJM interest-rate tree

\author{
Syntax \\ [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule)
}

\section*{Arguments}
\begin{tabular}{ll}
HJMTree & Forward-rate tree structure created by hjmtree. \\
LegRate & \begin{tabular}{l}
Number of instruments (NINST)-by-2 matrix, with \\
each row defined as:
\end{tabular} \\
& \begin{tabular}{l}
[CouponRate Spread] or [Spread CouponRate] \\
CouponRate is the decimal annual rate. Spread is the \\
number of basis points over the reference rate. The \\
first column represents the receiving leg, while the \\
second column represents the paying leg.
\end{tabular} \\
Settle & \begin{tabular}{l}
Settlement date. NINST-by-1 vector of serial date \\
numbers or date strings. Settle must be earlier than
\end{tabular} \\
Maturity.
\end{tabular}

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- 0 = actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\) actual/365 (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default \(=100\).

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is [10] for each instrument.
\begin{tabular}{ll}
Options & \begin{tabular}{l}
(Optional) Derivatives pricing options structure \\
created with derivset.
\end{tabular} \\
EndMonthRule & (Optional) NINST-by-1 vector representing the \\
& End-of-month rule. Default \(=1\).
\end{tabular}

The Settle date for every swap is set to the ValuationDate of the HJM tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially zero. To do this enter CouponRate as NaN.

\section*{Description}

\section*{Examples}
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) computes the price of a swap instrument from an HJM interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0 .

PriceTree is the tree structure with a vector of the swap values at each node.

CFTree is the tree structure with a vector of the swap cash flows at each node.

SwapRate is a NINST-by- 1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN .

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is \(\$ 100\). The values for the remaining arguments are:
- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.
```

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

```

Price the swap using the HJMTree included in the MAT-file deriv.mat. The HJMTree structure contains the time and forward-rate information needed to price the instrument.
```

load deriv.mat;

```

Use swapbyhjm to compute the price of the swap.
```

[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
3.6923
PriceTree =
FinObj: 'HJMPriceTree'
tObs: [0 1 2 3 4]
PBush: {1x5 cell}
CFTree =

```
```

FinObj: 'HJMCFTree'
tObs: [00 1 2 2 3 4]
CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

```

Using the function treeviewer, you can examine CFTree graphically and see the cash flows from the swap along both the up and the down branches. A positive cash flow indicates an inflow (income - payments > 0), while a negative cash flow indicates an outflow (income - payments \(<0\)).
```

treeviewer(CFTree)

```


Note treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely, for interest-rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).

In this example, you have sold a swap (receive fixed rate and pay floating rate). At time \(t=3\), if interest rates go down, your cash flow is positive (\$2.63), meaning that you will receive this amount. But if interest rates go up, your cash flow is negative (\(-\$ 1.58\)), meaning that you owe this amount.

Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time \(=0\) is zero.
```

LegRate = [NaN 20];
[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
0
PriceTree =
FinObj: 'HJMPriceTree'
tObs: [0 1 1 2 3 4 4]
PBush:{[0] [1\times1\times2 double] [1\times2\times2 double] ... [1\times8 double]}
CFTree =
FinObj: 'HJMCFTree'
tObs: [0 1 2 3 4]

```
```

CFBush:{[0] [1\times1\times2 double] [1\times2x2 double] ... [1\times8 double]}
SwapRate =
0.0466

```

See Also capbyhjm, cfbyhjm, floorbyhjm, hjmtree

Purpose
Price swap instrument from Hull-White interest-rate tree

\author{
Syntax \\ [Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule)
}

\section*{Arguments}
\begin{tabular}{ll}
HWTree & forward-rate tree structure created by hwtree. \\
LegRate & \begin{tabular}{l}
Number of instruments (NINST)-by-2 matrix, with \\
each row defined as:
\end{tabular} \\
& [CouponRate Spread] or [Spread CouponRate] \\
& \begin{tabular}{l}
CouponRate is the decimal annual rate. Spread is the \\
number of basis points over the reference rate. The \\
first column represents the receiving leg, while the \\
second column represents the paying leg.
\end{tabular} \\
Settle & \begin{tabular}{l}
Settlement date. NINST-by-1 vector of serial date \\
numbers or date strings. Settle must be earlier than \\
Maturity.
\end{tabular} \\
Maturity & \begin{tabular}{l}
Maturity date. NINST-by-1 vector of dates \\
representing the maturity date for each swap.
\end{tabular} \\
LegReset & \begin{tabular}{l}
(Optional) NINST-by-2 matrix representing the reset \\
frequency per year for each swap. Default = [1 1].
\end{tabular}
\end{tabular}

Basis (Optional) Day-count basis of the instrument. A vector of integers.
- 0 = actual/actual (default)
- \(1=30 / 360\) (SIA)
- 2 = actual/360
- \(3=\) actual \(/ 365\)
- \(4=30 / 360\) (PSA)
- \(5=30 / 360\) (ISDA)
- \(6=30 / 360\) (European)
- 7 = actual/365 (Japanese)
- \(8=\) actual/actual (ISMA)
- \(9=\) actual/360 (ISMA)
- \(10=\mathrm{actual} / 365\) (ISMA)
- \(11=30 / 360 \mathrm{E}\) (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default \(=100\).

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is [1 0] for each instrument.
\[
\begin{array}{ll}
\text { Options } & \text { (Optional) Derivatives pricing options structure } \\
\text { created with derivset. } \\
\text { EndMonthRule } & \text { (Optional) NINST-by-1 vector representing the } \\
& \text { End-of-month rule. Default =1. }
\end{array}
\]

The Settle date for every swap is set to the ValuationDate of the HW tree. The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the swap is initially zero. To do this enter CouponRate as NaN.

\section*{Description}

\section*{Examples}
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) computes the price of a swap instrument from a Hull-White interest-rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at time 0 .

PriceTree is the tree structure with a vector of the swap values at each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that the swaps' values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN.

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is \(\$ 100\). The values for the remaining arguments are:
- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2005
- Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.
```

Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

```

Price the swap using the HWTree included in the MAT-file deriv.mat. The HWTree structure contains the time and forward-rate information needed to price the instrument.
```

load deriv.mat;

```

Use swapbyhw to compute the price of the swap.
```

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
5.9109
PriceTree =
FinObj: 'HWPriceTree'
PTree: {1x5 cell}
tObs: [0 1 2 3 4]
Connect: {[2] [2 3 4] [2 2 3 4 4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
SwapRate =

```

NaN
Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time \(=0\) is zero.
```

LegRate = [NaN 20];
[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ...
Settle, Maturity, LegReset, Basis, Principal, LegType)
Price =
1.4211e-014
PriceTree =
FinObj: 'HWPriceTree'
PTree: {1x5 cell}
tObs: [l0 1 2 3 4]
Connect: {[2] [2 3 4] [2 2 3 4 4 4]}
Probs: {[3\times1 double] [3\times3 double] [3\times5 double]}
SwapRate =
0.0438

```
See Also
bondbyhw, capbyhw, cfbyhw, floorbyhw, fixedbyhw, hwtree

\section*{Purpose}

Price swap instrument from set of zero curves

\author{
Syntax \\ ```
[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule)
```

}

Arguments
$\left.\begin{array}{ll}\text { RateSpec } & \begin{array}{l}\text { A structure containing the properties of an } \\ \text { interest-rate structure. See intenvset for } \\ \text { information on creating RateSpec. }\end{array} \\ \text { LegRate } & \begin{array}{l}\text { Number of instruments (NINST)-by-2 matrix, with } \\ \text { each row defined as: }\end{array} \\ & \text { [CouponRate Spread] or [Spread CouponRate] } \\ \text { CouponRate is the decimal annual rate. Spread is } \\ \text { the number of basis points over the reference rate. } \\ \text { The first column represents the receiving leg, while } \\ \text { the second column represents the paying leg. }\end{array}\right\}$

Basis (Optional) Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual (default)
- 1 = 30/360 (SIA)
- 2 = actual/360
- $3=$ actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=$ actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal amounts. Default $=100$.

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument. Each column indicates if the corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the values entered in LegRate. Default is [1 0] for each instrument.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule. Default $=1$.

## Description

## Examples

[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType, EndMonthRule) prices a swap instrument from a set of zero coupon bond rates.

Price is a NINST by number of curves (NUMCURVES) matrix of swap prices. Each column arises from one of the zero curves.

SwapRate is an NINST-by-NUMCURVES matrix of rates applicable to the fixed leg such that the swap's values are zero at time 0 . This rate is used in calculating the swaps' prices when the rate specified for the fixed leg in LegRate is NaN. The SwapRate output is padded with NaN for those instruments in which CouponRate is not set to NaN.

Example 1. Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments are made once a year, and the notional principal amount is $\$ 100$. The values for the remaining arguments are:

- Coupon rate for fixed leg: 0.06 (6\%)
- Spread for floating leg: 20 basis points
- Swap settlement date: Jan. 01, 2000
- Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate, LegType, and LegReset matrices.

```
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year
```

Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term structure needed to price the bond.

```
load deriv.mat;
```

Use swapbyzero to compute the price of the swap.

```
Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)
Price =
 3.6923
```

Example 2. Using the previous data, calculate the swap rate, which is the coupon rate for the fixed leg such that the swap price at time $=0$ is zero.

```
LegRate = [NaN 20];
[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,...
Maturity, LegReset, Basis, Principal, LegType)
Price =
 0
SwapRate =
 0.0466
```


## Purpose

Price swaption from BDT interest-rate tree

Syntax<br>[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2)

## Arguments

$\left.\begin{array}{ll}\text { BDTTree } & \begin{array}{l}\text { Interest-rate tree structure created by } \\ \text { bdttree. }\end{array} \\ \text { OptSpec } & \begin{array}{l}\text { NINST-by-1 cell array of strings 'call' or } \\ \text { 'put'. A call swaption entitles the buyer to } \\ \text { pay the fixed rate. A put swaption entitles } \\ \text { the buyer to receive the fixed rate. }\end{array} \\ \text { Strike } & \begin{array}{l}\text { NINST-by-1 vector for strike swap rate values. }\end{array} \\ \text { ExerciseDates } & \begin{array}{l}\text { For a European option: NINST-by-1 vector of } \\ \text { exercise dates. Each row is the schedule for } \\ \text { one option. For a European option, there is } \\ \text { only one ExerciseDate on the option expiry } \\ \text { date. }\end{array} \\ \text { For an American option: NINST-by-2 vector } \\ \text { of exercise date boundaries. For each } \\ \text { instrument, the option can be exercised } \\ \text { on any coupon date between or including } \\ \text { the pair of dates on that row. If only one } \\ \text { non-NaN date is listed, or if ExerciseDates } \\ \text { is NINST-by-1, the option can be exercised } \\ \text { between the underlying swap Settle and the } \\ \text { single listed ExerciseDate. }\end{array}\right\}$

Maturity NINST-by-1 vector of dates representing the maturity date for each swap.

Note All optional inputs that follow are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

- 0 for European options
- 1 for American options

SwapReset

Basis
(Optional) NINST-by-1 vector representing the reset frequency per year for the underlying swap. Default is 1 .
(Optional) Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)

	- $9=\mathrm{actual} / 360$ (ISMA)
	- $10=\mathrm{actual} / 365$ (ISMA)
	- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=$ actual/365 (ISDA)	
Principal	- $13=\mathrm{BUS} / 252$
Options	(Optional) NINST-by-1 vector of the notional   principal amounts. Default is 100.   (Optional) Derivatives pricing options   structure created with derivset.

[^1]Note The Settle date for every swaption is set to the ValuationDate of the BDT tree. The swap argument Settle is ignored.

A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a NINST-by- 1 vector of expected swaption prices at time 0 .

PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:

- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.


## Examples

Price a 5 -year call swaption using a BDT interest-rate tree.
Assume that interest rate and volatility are fixed at $6 \%$ and $20 \%$ annually between the valuation date of the tree until its maturity. Build a tree with the following data:

```
Rates = 0.06 * ones (10,1);
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';....
'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016'];
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';...
'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017'];
ValuationDate = 'jan-1-2007';
Compounding = 1;
```

Determine the RateSpec:

```
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ...
'Compounding', Compounding);
```

Use VolSpec to compute the interest rate volatility:

```
Volatility = 0.20 * ones (10,1); VolSpec = bdtvolspec(ValuationDate,...
EndDates, Volatility);
```

Use TimeSpec to specify the structure of the time layout for an equal probabilities tree:

```
TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
```

Build the BDT tree:

```
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec);
```

Use the following swaption arguments:

```
SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2015';
Spread = 0;
SwapReset = 1;
Principal = 100;
OptSpec = 'call';
Strike=.062;
ExerciseDates = 'jan-1-2012';
Basis=1;
```

Price the swaption

```
[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)
```

to return

```
Price = 2.0592
```

PriceTree =
FinObj: 'BDTPriceTree'
tObs: [0 1423456789 10]
PTree: \{1x11 cell\}

## See Also

bdttree, instswaption, swapbybdt

Purpose Price swaption from BK interest-rate tree

Syntax [Price, PriceTree] = swaptionbybk(BKTTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2)

## Arguments

BKTree	Interest-rate tree structure created by   bktree.
OptSpec	NINST-by-1 cell array of strings ' call' or   'put '. A call swaption entitles the buyer to   pay the fixed rate. A put swaption entitles   the buyer to receive the fixed rate.
Strike	NINST-by-1 vector for strike swap rate values.
ExerciseDates	For a European option: NINST-by-1 vector of   exercise dates. Each row is the schedule for   one option. For a European option, there is   only one ExerciseDate on the option expiry   date.
	For an American option: NINST-by-2 vector   of exercise date boundaries. For each   instrument, the option can be exercised   on any coupon date between or including   the pair of dates on that row. If only one   non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised	
between the underlying swap Settle and the	
single listed ExerciseDate.	

Maturity
NINST-by- 1 vector of dates representing the maturity date for each swap.

Note All optional inputs that follow are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

- 0 for European options
- 1 for American options

SwapReset
(Optional) NINST-by-1 vector representing the reset frequency per year for the underlying swap. Default is 1.

Basis
(Optional) Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=\mathrm{actual} / 365$ (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=\mathrm{actual} / 365$ (ISDA)
- 13 = BUS/252

Principal
(Optional) NINST-by-1 vector of the notional principal amounts. Default is 100 .

Options (Optional) Derivatives pricing options structure created with derivset.

## Description

[Price, PriceTree] = swaptionbybk(BKTTree, OptSpec, Strike,ExerciseDates, Spread, Settle, Maturity,'Name1', Value1, 'Name2', Value2) computes the price of a swaption from a BK interest-rate tree.

Note The Settle date for every swaption is set to the ValuationDate of the BK tree. The swap argument Settle is ignored.

The swaption may be a call swaption or a put swaption.
A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.
A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a NINST-by- 1 vector of expected swaption prices at time 0 .

PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:

- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.


## Examples

Price a 4 -year call and put swaption using a BK interest-rate tree with the following data.
Specify the RateSpec, assuming the interest rate is fixed at 7\% annually:

```
Rates =0.07 * ones (10,1);
Compounding = 2;
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009'; ...
'jul-1-2009'; 'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009'; ...
'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007';
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,...
'Compounding', Compounding);
```

Use BKVolSpec to compute the interest rate volatility:

```
Volatility = 0.10*ones(10,1);
AlphaCurve = 0.05*ones(10,1);
AlphaDates = EndDates;
BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);
```

Use BKTimeSpec to specify the structure of the time layout for the BK interest-rate tree.

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);
Build the BK tree:

```
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);
```

Use the following arguments for a 5 -year swap and 4 -year swaption:

```
SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ;
Principal = 100;
OptSpec = {'call' ;'put'};
Strike= [0.07 ; 0.0725];
ExerciseDates = 'jan-1-2011';
Basis=1;
```

Price the swaption

```
PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ...
'Principal', Principal)
```

to return
PriceSwaption =
0.3593
0.4756

See Also
bktree, instswaption, swapbybk

## Purpose

Price swaption from HJM interest-rate tree

Syntax<br>[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2)

## Arguments

HJMTree	Interest-rate tree structure created by   hjmtree.
OptSpec	NINST-by-1 cell array of strings ' call' or   'put'. A call swaption entitles the buyer to   pay the fixed rate. A put swaption entitles   the buyer to receive the fixed rate.
Strike	NINST-by-1 vector of strike swap rate values.
ExerciseDates	For a European option: NINST-by-1 vector of   exercise dates. Each row is the schedule for   one option. For a European option, there is   only one ExerciseDate on the option expiry   date.
For an American option: NINST-by-2 vector   of exercise date boundaries. For each   instrument, the option can be exercised   on any coupon date between or including   the pair of dates on that row. If only one   non-NaN date is listed, or if ExerciseDates   is NINST-by-1, the option can be exercised   between the underlying swap Settle and the	
single listed ExerciseDate.	

Maturity NINST-by-1 vector of dates representing the maturity date for each swap.

Note All optional inputs that follow are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

- 0 for European options
- 1 for American options

SwapReset

Basis
(Optional) NINST-by-1 vector representing the reset frequency per year for the underlying swap. Default is 1 .
(Optional) Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)

	- $9=$ actual/360 (ISMA)
	- $10=\mathrm{actual} / 365$ (ISMA)
	- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=$ actual/365 (ISDA)	
Principal	- $13=\mathrm{BUS} / 252$
Options	(Optional) NINST-by-1 vector of the notional   principal amounts. Default is 100.   (Optional) Derivatives pricing options   structure created with derivset.

[^2]Note The Settle date for every swaption is set to the ValuationDate of the HJM tree. The swap argument Settle is ignored.

The swaption may be a call swaption or a put swaption.
A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a (NINST-by-1 vector of expected swaption prices at time 0.

PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:

- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.


## Examples

Price a 1-year call swaption using an HJM interest-rate tree.
Assume that interest rate is fixed at $5 \%$ annually between the valuation date of the tree until its maturity. Build a tree with the following data.
Specify the RateSpec:

```
Rates = [0.05;0.05;0.05;0.05];
StartDates = 'jan-1-2007';
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011'];
ValuationDate = StartDates;
Compounding = 1;
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);
```

Use VolSpec to compute the interest rate volatility:

```
VolSpec=hjmvolspec('Constant',0.01);
```

Use TimeSpec to specify the structure of the time layout for the HJM interest-rate tree:

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
Build the HJM tree:

```
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec);
```

Use the following swaption arguments:

```
SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2010';
```

```
Spread = [0];
SwapReset = 1;
Basis = 1;
Principal = 100;
OptSpec = 'call';
Strike=0.05;
ExerciseDates = '01-Jan-2008';
```

Price the swaption
[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ... 'Basis', Basis, 'Principal', Principal)
to return

Price $=$
0.9296

PriceTree =

FinObj: 'HJMPriceTree
tObs: [5×1 double]
PBush: \{[0.9296] [1x1x2 double] [1x2x2 double] [1x4x2 double] [0 0 0 0 0 0 0 0] \}
See Also
hjmtree, instswaption, swapbyhjm

Purpose Price swaption from HW interest-rate tree

Syntax [Price, PriceTree] = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, 'Name1', Value1, 'Name2', Value2)

## Arguments

HWTree	Interest-rate tree structure created by   hwtree.
OptSpec	NINST-by-1 cell array of strings ' call' or   'put'. A call swaption entitles the buyer to   pay the fixed rate. A put swaption entitles   the buyer to receive the fixed rate.
Strike	NINST-by-1 vector for strike swap rate values.
ExerciseDates	For a European option: NINST-by-1 vector of   exercise dates. Each row is the schedule for   one option. For a European option, there is   only one ExerciseDate on the option expiry   date.
	For an American option: NINST-by-2 vector   of exercise date boundaries. For each   instrument, the option can be exercised   on any coupon date between or including   the pair of dates on that row. If only one   non-NaN date is listed, or if ExerciseDates
is NINST-by-1, the option can be exercised	
between the underlying swap Settle and the	
single listed ExerciseDate.	

Maturity
NINST-by- 1 vector of dates representing the maturity date for each swap.

Note All optional inputs that follow are specified as matching parameter name/value pairs. The parameter name is specified as a character string, followed by the corresponding parameter value. Parameter name/value pairs may be specified in any order; names are case-insensitive and partial string matches are allowed provided no ambiguities exist.

AmericanOpt (Optional) NINST-by-1 flags options:

- 0 for European options
- 1 for American options

SwapReset
(Optional) NINST-by-1 vector representing the reset frequency per year for the underlying swap. Default is 1 .

Basis
(Optional) Day-count basis of the instrument. A vector of integers.

- $0=$ actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- $7=$ actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=$ actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- 12 = actual/365 (ISDA)
- 13 = BUS/252

Principal
(Optional) NINST-by-1 vector of the notional principal amounts. Default is 100 .

Options (Optional) Derivatives pricing options structure created with derivset.

## Description

[Price, PriceTree] = swaptionbyhw(HWTree, OptSpec, Strike,ExerciseDates, Spread, Settle, Maturity,'Name1', Value1, 'Name2', Value2) computes the price of a swaption from a HW interest-rate tree.

Note The Settle date for every swaption is set to the ValuationDate of the HW tree. The swap argument Settle is ignored.

The swaption may be a call swaption or a put swaption.
A call swaption or payer swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.
A put swaption or receiver swaption allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

Price is a NINST-by- 1 vector of expected swaption prices at time 0 .

PriceTree is a MATLAB structure of trees containing vectors of swaption instrument prices and a vector of observation times for each node. Within PriceTree:

- PriceTree. PTree contains the clean prices.
- PriceTree.tObs contains the observation times.


## Examples

Price a 3 -year put swaption using an HW interest-rate tree with the following data.
Specify the RateSpec:

```
Rates =0.075 * ones (10,1);
Compounding = 2;
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';....
'jul-1-2009';'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009';...
'jan-1-2010';'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007';
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);
```

Use HWVolSpec to compute the interest rate volatility:

```
Volatility = 0.05*ones(10,1);
AlphaCurve = 0.01*ones(10,1);
AlphaDates = EndDates;
HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);
```

Use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tree:

```
HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);
```

Build the HW tree:

```
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);
```

Use the following arguments for a 5 -year swap and 3 -year swaption:

```
SwapSettlement = 'jan-1-2007';
SwapMaturity = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ;
Principal = 100;
OptSpec = 'put';
Strike= 0.04;
ExerciseDates = 'jan-1-2010';
Basis=1;
```

Price the swaption

```
PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis,'Principal', Principal)
to return
PriceSwaption =
 2.9081
```


## See Also

hwtree, instswaption, swapbyhw

## Purpose Dates from time and frequency

Syntax Dates = time2date(Settle, Times, Compounding, Basis, EndMonthRule)

## Arguments

$\left.\begin{array}{ll}\text { Settle } & \begin{array}{l}\text { Settlement date. A vector of serial date numbers } \\ \text { or date strings. }\end{array} \\ \text { Times } & \begin{array}{l}\text { Vector of times corresponding to the compounding } \\ \text { value. Times must be equal to or greater than } 0 .\end{array} \\ \text { (Optional) Scalar value representing the rate } \\ \text { at which the input zero rates were compounded } \\ \text { when annualized. Default }=2 \text {. This argument } \\ \text { determines the formula for the discount factors: }\end{array}\right\}$

Basis (Optional) Day-count basis of the instrument. A vector of integers.

- 0 = actual/actual (default)
- $1=30 / 360$ (SIA)
- 2 = actual/360
- 3 = actual/365
- $4=30 / 360$ (PSA)
- $5=30 / 360$ (ISDA)
- $6=30 / 360$ (European)
- 7 = actual/365 (Japanese)
- $8=$ actual/actual (ISMA)
- $9=$ actual/360 (ISMA)
- $10=$ actual/365 (ISMA)
- $11=30 / 360 \mathrm{E}$ (ISMA)
- $12=$ actual/365 (ISDA)
- 13 = BUS/252

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only when Maturity is an end-of-month date for a month having 30 or fewer days. 0 = ignore rule, meaning that a bond's coupon payment date is always the same numerical day of the month. $1=$ set rule on (default), meaning that a bond's coupon payment date is always the last actual day of the month.

## Description

Dates = time2date(Settle, Times, Compounding, Basis, EndMonthRule) computes dates corresponding to the times occurring beyond the settlement date.

Note To obtain accurate results from this function, the Basis and Dates arguments must be consistent. If the Dates argument contains months that have 31 days, Basis must be one of the values that allow months to contain more than 30 days; for example, Basis $=0$, 3 , or 7 .

The time2date function is the inverse of date2time.

Show that date2time and time2date are the inverse of each other. First compute the time factors using date2time.

```
Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006';
 '31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
Times = date2time(Settle, Dates, Compounding, Basis,...
 EndMonthRule)
Times =
 5.9945
 6.9945
 7.5738
 8.6576
```

Now use the calculated Times in time2date and compare the calculated dates with the original set.

```
Dates_calc = time2date(Settle, Times, Compounding, Basis,...
 EndMonthRule)
```


## time2date

```
Dates_calc =
 732555
 7 3 2 7 3 6
 732843
 733042
datestr(Dates_calc)
ans =
31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006
```

See Also cftimes in Financial Toolbox documentation

```
date2time, disc2rate, rate2disc
```

Purpose Entries from node of recombining binomial tree
Syntax Values = treepath(Tree, BranchList)
Arguments
Description Values = treepath(Tree, BranchList) extracts entries of a node of a recombining binomial tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number one, the second-to-top is two, and so on. Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a recombining tree.

## Examples <br> Create a BDT tree by loading the example file.

```
load deriv.mat;
```

Then

```
FwdRates = treepath(BDTTree.FwdTree, [\begin{array}{lll}{1 2 1])}\end{array})
```

returns the rates at the tree nodes located by taking the up branch, then the down branch, and finally the up branch again.

```
FwdRates =
```

1.1000
1.0979
1.1377

You can visualize this with the treeviewer function.
treeviewer (BDTTree)


## See Also

mktree, treeshape

Purpose
Shape of recombining binomial tree
Syntax [NumLevels, NumPos, IsPriceTree] = treeshape(Tree)
Arguments

$$
\text { Tree } \quad \text { Recombining binomial tree. }
$$

## Description

[NumLevels, NumPos, IsPriceTree] = treeshape(Tree) returns information on a recombining binomial tree's shape.
NumLevels is the number of time levels of the tree.
NumPos is a 1 -by-NUMLEVELS vector containing the length of the state vectors in each level.

IsPriceTree is a Boolean determining if a final horizontal branch is present in the tree.

## Examples Create a BDT tree by loading the example file.

load deriv.mat;
With treeviewer you can see the general shape of the BDT interest-rate tree.
treeviewer (BDTTree)

## treeshape



With this tree
[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree)
returns


See Also
mktree, treepath

Purpose	Tree information
Syntax	treeviewer(Tree)   treeviewer(PriceTree, InstSet)     

## Arguments

Tree $\quad$ Tree can be any of the following types of trees.
Interest-rate trees:

- Black-Derman-Toy (BDTTree)
- Black-Karasinski (BKTree)
- Heath-Jarrow-Morton (HJMTree)
- Hull-White (HWTree)

For information on creating interest-rate trees, see:

- bktree for information on creating BKTree.
- bdttree for information on creating BDTTree.
- hjmtree for information on creating HJMTree.
- hwtree for information on creating HWTree.

Money market trees:

- Money market tree (MMktTree)

For information on creating money-market trees, see:

- mmktbybdt for information on creating a money-market tree from a BDT interest-rate tree.
- mmktbyhjm for information on creating a money-market tree from an HJM interest-rate tree.


## treeviewer

Note Money market trees cannot be created from
BK or HW interest-rate trees.

Stock price trees:

- Cox-Ross-Rubinstein (CRRTree)
- Implied Trinomial tree (ITTTree)
- Equal probabilities (EQPTree)

For information on creating stock price trees, see:

- crrtree for information on creating CRRTree.
- eqptree for information on creating EQPTree.
- itttree for information on creating ITTTree.

Cash flow trees:

- Black-Derman-Toy (BDTCFTree)
- Heath-Jarrow-Morton (HJMCFTree)

Cash flow trees are created as outputs from the swap functions swapbyhjm and swapbybdt.

Note For the function swapbybdt, which uses a recombining binomial tree, this structure contains only NaNs because cash flows cannot be accurately calculated at every tree node for floating rate notes.

PriceTree	PriceTree is a Black-Derman-Toy   (BDTPriceTree), Black-Karasinski (BKPriceTree),   Heath-Jarrow-Morton (HJMPriceTree), Hull-White   (HWPriceTree), Cox-Ross-Rubinstein (crrprice),
CFTree	Equal probabilities (eqprice), or Implied Trinomial   tree (ittprice) tree of instrument prices.
	CFTree is a tree of swap cash flows. You create cash   flow trees when executing the Black-Derman-Toy   and Heath-Jarrow-Morton swap functions.   (Black-Derman-Toy cash flow trees contain only
InstSet	NaNs.)         (Optional) Variable containing a collection of   instruments whose prices or cash flows are contained   in a tree. The collection can be created with the   function instadd or as a cell array containing the
	names of the instruments. To display the names   of the instruments, the field Name should exist in   InstSet. If InstSet is not passed, treeviewer
uses default instruments names (numbers) when	
displaying prices or cash flows.	

## Description

treeviewer(Tree) displays an interest rate, stock price, or money-market tree.
treeviewer(PriceTree, InstSet) displays a tree of instrument prices. If you provide the name of an instrument set (InstSet) and you have named the instruments using the field Name, the treeviewer display identifies the instrument being displayed with its name. (See Example 3 for a description.) If you do not provide the optional InstSet argument, the instruments are identified by their sequence number in the instrument set. (See Example 6 for a description.)
treeviewer(CFTree, InstSet) displays a cash flow tree that has been created with swapbybdt or swapbyhjm. If you provide the name of an instrument set (InstSet) containing cash flow names, the treeviewer

## treeviewer

display identifies the instrument being displayed with its name. (See Example 3 for a description.) If the optional InstSet argument is not present, the instruments are identified by their sequence number in the instrument set. See Example 6 for a description.)
treeviewer price tree diagrams follow the convention that increasing prices appear on the upper branch of a tree and, consequently, decreasing prices appear on the lower branch. Conversely, for interest rate displays, decreasing interest rates appear on the upper branch (prices are rising) and increasing interest rates on the lower branch (prices are falling).
treeviewer provides an interactive display of prices or interest rates. The display is activated by clicking the nodes along the price or interest rate path shown in the left pane when the function is called. For HJM trees you select the endpoints of the path, and treeviewer displays all data from beginning to end. With recombining trees, such as BDT, BK and HW, you must click each node in succession from the beginning $(\mathrm{t}=1)$ to the last node $(\mathrm{t}=\mathrm{n})$. Do not include the root node, the node at $\mathrm{t}=0$. If you do not click the nodes in the proper order, you are reminded with the message

```
Parent of selected node must be selected.
```


## Examples Example 1. Display an HJM Interest-Rate Tree.

```
load deriv.mat
treeviewer(HJMTree)
```

The treeviewer function displays the structure of an HJM tree in the left pane. The tree visualization in the right pane is blank.


To visualize the actual interest-rate tree, go to the Tree Visualization pane and click on Path (the default) and Diagram. Now, select the first path by clicking on the last node $(t=3)$ of the upper branch.

## treeviewer



Note that the entire upper path is highlighted in red.
To complete the process, select a second path by clicking on the last node ( $\mathrm{t}=3$ ) of another branch. The second path is highlighted in purple. The final display looks like this.


## Alternative Forms of Display

The Tree Visualization pane allows you to select alternative ways to display tree data. For example, if you select Path and Table as your visualization choices, the final display above instead appears in tabular form.

## treeviewer



To see a plot of interest rates along the chosen branches, click Path and Plot in the Tree Visualization pane.


Note that with Plot selected, rising interest rates are shown on the upper branch and declining interest rates on the lower.
Finally, if you clicked Node and Children under Tree Visualization, you restrict the data displayed to just the selected parent node and its children.

## treeviewer



With Node and Children selected, the choices under Visualization are unavailable.

## Example 2. Display a BDT Interest-Rate Tree.

```
load deriv.mat
treeviewer(BDTTree)
```

The treeviewer function displays the structure of a BDT tree in the left pane. The tree visualization in the right pane is blank.


To visualize the actual interest-rate tree, go to the Tree Visualization pane and click Path (the default) and Diagram. Now, select the first path by clicking on the first node of the up branch ( $\mathrm{t}=1$ ). Continue by clicking the down branch at the next node $(\mathrm{t}=2)$. The two figures below show the treeviewer path diagrams for these selections.

## treeviewer



Continue clicking all nodes in succession until you reach the end of the branch. Note that the entire path you have selected is highlighted in red.

Select a second path by clicking the first node of the lower branch ( $\mathrm{t}=1$ ). Continue clicking lower nodes as you did on the first branch.
Note that the second branch is highlighted in purple. The final display looks like this.


## Example 3. Display an HJM Price Tree for Named Instruments.

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet); treeviewer (PriceTree, HJMInstSet)

## treeviewer



## Example 4. Display a BDT Price Tree for Named Instruments.

## load deriv.mat

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet); treeviewer(PriceTree, BDTInstSet)


## Example 5. Display an HJM Price Tree with Renamed Instruments.

```
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
Names = {'Bond1', 'Bond2', 'Option', 'Fixed','Float', 'Cap',...
'Floor', 'Swap'};
treeviewer(PriceTree, Names)
```


## treeviewer



## Example 6. Display an HJM Price Tree Using Default Instrument Names (Numbers).

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet); treeviewer(PriceTree)


See Also
bdttree, bktree, crrtree, eqptreehjmtree, hwtree, instadd, itttreemmktbybdt, mmktbyhjm, swapbybdt, swapbyhjm

Purpose Entries from node of recombining trinomial tree

```
Syntax Values = trintreepath(TrinTree, BranchList)
```

Arguments
TrinTree Recombining price or interest-rate trinomial tree.

BranchList Number of paths (NUMPATHS) by path length (PATHLENGTH) matrix containing the sequence of branchings.

# Description Values = trintreepath(TrinTree, BranchList) extracts entries of a node of a recombining trinomial tree. The node path is described by the sequence of branchings taken, starting at the root. The top branch is number 1 , the middle branch is 2 , and the bottom branch is 3 . Set the branch sequence to 0 to obtain the entries at the root node. <br> Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved entries of a recombining tree. 

## Examples <br> Create a Hull-White tree by loading the example file.

load deriv.mat;
Then, for example

```
FwdRates = trintreepath(HWTree, [ll 2 3])
```

returns the rates at the tree nodes located by starting at 0 , taking the up branch at the first node, the middle branch at the second node, and finally the bottom branch at the third node.

$$
\begin{aligned}
& 1.0528 \\
& 1.0652 \\
& 1.0591
\end{aligned}
$$

You can visualize this with the treeviewer function.

```
treeviewer(HWTree)
```



See Also
mktrintree, trintreeshape

## trintreeshape

Purpose
Syntax [NumLevels, NumPos, NumStates] = trintreeshape(TrinTree)
Arguments
TrinTree Recombining price or interest-rate trinomial tree.

## Description

Examples
Create a Hull-White tree by loading the example file.
load deriv.mat;
With treeviewer you can see the general shape of the HW interest-rate tree.
treeviewer (HWTree)


With this tree
[NumLevels, NumPos, NumStates] = trintreeshape(HWTree)
returns
NumLevels =
4
$\begin{array}{rrrrr}\text { NumPos } & = & & \\ 1 & 1 & 1 & 1\end{array}$

NumStates =
135
trintreeshape

# Derivatives Pricing Options 

- "Pricing Options Structure" on page A-2
- "Customizing the Structure" on page A-5


## Pricing Options Structure

In this section...<br>"Introduction" on page A-2<br>"Default Structure" on page A-2

## Introduction

The MATLAB Options structure provides additional input to most pricing functions. The Options structure

- Tells pricing functions how to use the interest-rate tree to calculate instrument prices.
- Determines what additional information the Command Window displays along with instrument prices.
- Tells pricing functions which method to use in pricing barrier options.

The pricing options structure is primarily used in the pricing of interest-rate-based financial derivatives. However, the BarrierMethod field in the structure allows you to use it in pricing equity barrier options as well.

You provide pricing options in an optional Options argument passed to a pricing function. (See, for example, bondbyhjm, bdtprice, barrierbycrr, barrierbyeqp, or barrierbyitt.)

## Default Structure

If you do not specify the Options argument in the call to a pricing function, the function uses a default structure. To observe the default structure, use derivset without any arguments.

```
Options = derivset
Options =
 Diagnostics: 'off'
 Warnings: 'on'
 ConstRate: 'on'
```

BarrierMethod: 'unenhanced'
The Options structure has four fields: Diagnostics, Warnings, ConstRate, and BarrierMethod.

## Diagnostics Field

Diagnostics indicates whether additional information is displayed if the tree is modified. The default value for this option is 'off'. If Diagnostics is set to 'on' and ConstRate is set to 'off', the pricing functions display information such as the number of nodes in the last level of the tree generated for pricing purposes.

## Warnings Field

Warnings indicates whether to display warning messages when the input tree is not adequate for accurately pricing the instruments. The default value for this option is 'on'. If both ConstRate and Warnings are 'on', a warning is displayed if any of the instruments in the input portfolio has a cash flow date between tree dates. If ConstRate is 'off', and Warnings is 'on', a warning is displayed if the tree is modified to match the cash flow dates on the instruments in the portfolio.

## ConstRate Field

ConstRate indicates whether the interest rates should be assumed constant between tree dates. By default this option is 'on', which is not an arbitrage-free assumption. Consequently the pricing functions return an approximate price for instruments featuring cash flows between tree dates. Instruments featuring cash flows only on tree nodes are not affected by this option and return exact (arbitrage-free) prices. When ConstRate is 'off ', the pricing function finds the cash flow dates for all instruments in the portfolio. If these cash flows do not align exactly with the tree dates, a new tree is generated and used for pricing. This new tree features the same volatility and initial rate specifications of the input tree but contains tree nodes for each date in which at least one instrument in the portfolio has a cash flow. Keep in mind that the number of nodes in a tree grows exponentially with the number of tree dates. Consequently, setting ConstRate 'off' dramatically increases the memory and processor demands on the computer.

## BarrierMethod Field

When using binomial trees to price barrier options, you may require a large number of tree steps to achieve an accurate result when tree nodes do not align with the barrier level. With the BarrierMethod field, the toolbox provides an enhancement method that improves the accuracy of the results without having to use large trees.

The BarrierMethod field can be set to 'unenhanced' (default) or 'interp'. If you specify 'unenhanced ', no correction calculation is used. Otherwise, if you specify 'interp', the toolbox provides an enhanced valuation by interpolating between nodes on barrier boundaries.

You specify the barrier method in the last input argument, Options, of the functions barrierbycrr, barrierbyeqp, crrprice, or eqpprice. Options is a structure that you create with the function derivset. Using derivset, you specify whether to use the enhanced or the unenhanced method.

For more information about this algorithm, see Derman, E., I. Kani, D. Ergener and I. Bardhan, "Enhanced Numerical Methods for Options with Barriers," Financial Analysts Journal, (Nov. - Dec. 1995), pp. 65-74.

## Customizing the Structure

Customize the Options structure by passing property name/property value pairs to the derivset function.

As an example, consider an Options structure with ConstRate 'off' and Diagnostics 'on'.

```
Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')
Options =
 Diagnostics: 'on'
 Warnings: 'on'
 ConstRate: 'off'
BarrierMethod: 'unenhanced'
```

To obtain the value of a specific property from the Options structure, use derivget.

```
CR = derivget(Options, 'ConstRate')
CR =
Off
```

Note Use derivset and derivget to construct the Options structure. These functions are guaranteed to remain unchanged, while the implementation of the structure itself may be modified in the future.

Now observe the effects of setting ConstRate 'off'. Obtain the tree dates from the HJM tree.

TreeDates = [HJMTree.TimeSpec.ValuationDate; ...
HJMTree. TimeSpec. Maturity]

TreeDates =

730486

730852
731217
731582 731947

```
datedisp(TreeDates)
```

01-Jan-2000
01-Jan-2001
01-Jan-2002
01-Jan-2003
01-Jan-2004
All instruments in HJMInstSet settle on January 1, 2000, and all have cash flows once a year, with the exception of the second bond, which features a period of 2 . This bond has cash flows twice a year, with every other cash flow consequently falling between tree dates. You can extract this bond from the portfolio to compare how its price differs by setting ConstRate to 'on' and 'off'.

```
BondPort = instselect(HJMInstSet, 'Index', 2);
instdisp(BondPort)
Index Type CouponRate Settle Maturity Period Basis...
1 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN...
```

First price the bond with ConstRate 'on' (default).

```
format long
[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
BondPrice =
 97.52801411736377
BondPriceTree =
FinObj: 'HJMPriceTree'
```

```
 PBush: {1x5 cell}
AIBush: {[0] [1x1x2 double] ... [1x4x2 double] [1x8 double]}
 tObs: [0 1 2 3 4]
```

Now recalculate the price of the bond setting ConstRate 'off '.

```
OptionsNoCR = derivset('ConstR', 'off')
OptionsNoCR =
Diagnostics: 'off'
 Warnings: 'on'
 ConstRate: 'off'
[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,...
BondPort, OptionsNoCR)
Warning: Not all cash flows are aligned with the tree. Rebuilding
tree.
BondPriceNoCR =
 97.53342361674437
BondPriceTreeNoCR =
FinObj: 'HJMPriceTree'
 PBush: {1x9 cell}
AIBush: {1x9 cell}
 tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]
```

As indicated in the last warning, because the cash flows of the bond did not align with the tree dates, a new tree was generated for pricing the bond. This pricing method returns more accurate results since it guarantees that the process is arbitrage-free. It also takes longer to calculate and requires more memory. The tobs field of the price tree structure indicates the increased memory usage. BondPriceTree.tObs has only five elements, while BondPriceTreeNoCR.tObs has nine. While this may not seem like a large difference, it has a dramatic effect on the number of states in the last node.

```
size(BondPriceTree.PBush{end})
```

```
ans =
 18
size(BondPriceTreeNoCR.PBush{end})
ans =
 128
```

The differences become more obvious by examining the price trees with treeviewer.
treeviewer(BondPriceTree, BondPort)

treeviewer(BondPriceTreeNoCR, BondPort)


All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =

-2.76	10.43	0.00	98.72
-3.56	16.64	-0.00	97.53
-166.18	13235.59	700.96	0.05
-2.76	10.43	0.00	98.72
-0.01	0.03	0	100.55
46.95	1090.63	14.91	6.28
-969.85	173969.77	1926.72	0.05
-76.39	287.00	0.00	3.690

A Derivatives Pricing Options

## A-10

## Bibliography

- "Black-Derman-Toy (BDT) Modeling" on page B-2
- "Heath-Jarrow-Morton (HJM) Modeling" on page B-3
- "Hull-White (HW) and Black-Karasinski (BK) Modeling" on page B-4
- "Cox-Ross-Rubinstein (CRR) Modeling" on page B-5
- "Implied Trinomial Tree (ITT) Modeling" on page B-6
- "Equal Probabilities Tree (EQP) Modeling" on page B-7
- "Closed-Form Solutions Modeling" on page B-8
- "Financial Derivatives" on page B-9


## Black-Derman-Toy (BDT) Modeling

A description of the Black-Derman-Toy interest-rate model can be found in:
Black, Fischer, Emanuel Derman, and William Toy, "A One Factor Model of Interest Rates and its Application to Treasury Bond Options," Financial Analysts Journal, January - February 1990.

## Heath-Jarrow-Morton (HJM) Modeling

An introduction to Heath-Jarrow-Morton modeling, used extensively in Financial Derivatives Toolbox software, can be found in:

Jarrow, Robert A., Modelling Fixed Income Securities and Interest Rate Options, McGraw-Hill, 1996, ISBN 0-07-912253-1.

## Hull-White (HW) and Black-Karasinski (BK) Modeling

A description of the Hull-White model and its Black-Karasinski modification can be found in:

Hull, John C., Options, Futures, and Other Derivatives, Prentice-Hall, 1997, ISBN 0-13-186479-3.

You can find additional information about the Hull-White single-factor model used in this toolbox in these papers:

Hull, J., and A. White, "Numerical Procedures for Implementing Term Structure Models I: Single-Factor Models," Journal of Derivatives, 1994.

Hull, J., and A. White, "Using Hull-White Interest Rate Trees," Journal of Derivatives, 1996.

## Cox-Ross-Rubinstein (CRR) Modeling

To learn about the Cox-Ross-Rubinstein model, see:
Cox, J. C., S. A. Ross, and M. Rubinstein, "Option Pricing: A Simplified
Approach," Journal of Financial Economics, Number 7, 1979, pp. 229-263.

## Implied Trinomial Tree (ITT) Modeling

To learn about the Implied Trinomial Tree model, see:
Chriss, Neil A., E. Derman, and I. Kani, "Implied trinomial trees of the volatility smile," Journal of Derivatives, 1996.

## Equal Probabilities Tree (EQP) Modeling

To learn about the Equal Probabilities model, see:
Chriss, Neil A.,Black Scholes and Beyond: Option Pricing Models, McGraw-Hill, 1996, ISBN 0-7863-1025-1.

## Closed-Form Solutions Modeling

To learn about the Bjerksund-Stensland 2002 model, see:
Bjerksund, P. and G. Stensland, Closed-Form Approximation of American Options, Scandinavian Journal of Management, 1993, Vol. 9, Suppl., pp. S88-S99.

Bjerksund, P. and G. Stensland, Closed Form Valuation of American Options, Discussion paper 2002 (http://bora.nhh.no/bitstream/2330/711/1/bjerksund\ petter\ 0902.pdf).

## Financial Derivatives

You can find information on the creation of financial derivatives and their role in the marketplace in numerous sources. Among those consulted in the development of Financial Derivatives Toolbox software are:

Chance, Don. M., An Introduction to Derivatives, The Dryden Press, 1998, ISBN 0-030-024483-8.

Fabozzi, Frank J., Treasury Securities and Derivatives, Frank J. Fabozzi Associates, 1998, ISBN 1-883249-23-6.

Wilmott, Paul, Derivatives: The Theory and Practice of Financial Engineering, John Wiley and Sons, 1998, ISBN 0-471-983-89-6.

## Examples

Use this list to find examples in the documentation.

## Instrument Portfolio Examples

"Creating New Instruments or Properties" on page 1-10
"instfind Examples" on page 1-13
"instselect Examples" on page 1-16

## Interest Rate Environment Examples

"Calculating Discount Factors from Rates" on page 2-9
"Calculating Rates from Discounts" on page 2-13
"Spot Curve to Forward Curve Conversion" on page 2-14
"Example: Pricing a Portfolio of Instruments" on page 2-26
"Example: Sensitivities and Prices" on page 2-27

## HJM Examples

"Specifying the Volatility Model (VolSpec)" on page 2-32
"Creating an HJM Tree" on page 2-43
"HJM Pricing Example" on page 2-57

## Volatility Modeling

"HJM Volatility Specification Example" on page 2-32

## BDT Examples

"BDT Volatility Specification Example" on page 2-34
"Creating a BDT Tree" on page $2-43$
"BDT Tree Structure" on page 2-49
"BDT Pricing Example" on page 2-59

# Rate Specification Creation 

"Rate Specification Creation Example" on page 2-35
"Hull-White Model Calibration Example" on page 2-36

## Time Specification

## "HJM Time Specification Example" on page 2-42

"Creating a BDT Time Specification" on page 2-42

## Sensitivity

"HJM Sensitivities Example" on page 2-65
"BDT Sensitivities Example" on page 2-66
"CRR Sensitivities Example" on page 3-44
"ITT Sensitivities Example" on page 3-45

## Treeviewer Examples

"Valuation Date Prices" on page 2-74
"Additional Observation Times" on page 2-76

## Creating Equity Derivatives

"Stock Structure Example Using a Binary Tree" on page 3-5
"TimeSpec Example Using a Binary Tree" on page 3-6
"Examples of Binary Tree Creation" on page 3-7
"Stock Structure Example Using an Implied Trinomial Tree" on page 3-10
"TimeSpec Example Using an Implied Trinomial Tree" on page 3-11
"Option Stock Structure Example Using an Implied Trinomial Tree" on page 3-12

## Pricing Equity Derivatives

"Computing Prices Using CRR" on page 3-33
"Computing Prices Using EQP" on page 3-35
"Computing Prices Using ITT" on page 3-37

## Closed-Form Solution Examples

"Computing Prices and Sensitivities Using the Black-Scholes Model" on page 3-53
"Computing Prices and Sensitivities Using the Black Model" on page 3-55
"Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model" on page 3-56
"Computing Prices and Sensitivities Using the Bjerksund-Stensland Model" on page 3-57

## Hedging Examples

"Maintaining Existing Allocations" on page 4-6
"Partially Hedged Portfolio" on page 4-7
"Fully Hedged Portfolio" on page 4-8
"Minimizing Portfolio Sensitivities" on page 4-9
"Self-Financing Hedges with hedgeslf" on page 4-12
"Specifying Constraints with ConSet" on page 4-16

## Hedging with Constrained Portfolios

"Example: Fully Hedged Portfolio" on page 4-21
"Example: Minimize Portfolio Sensitivities" on page 4-24
"Example: Under-Determined System" on page 4-25
"Example: Portfolio Constraints with hedgeslf" on page 4-27

## American option

An option that can be exercised any time until its expiration date. Contrast with European option on page Glossary-4.

## arbitrary cash flow instrument

A set of generic cash flow amounts for which a price needs to be established.

## Asian option

An option whose payoff depends upon the average price of the underlying asset over a certain period of time.

## asset-or-nothing option

A digital option that pays the value of the underlying security if the option expires in the money.

## barrier option

An option that is activated or deactivated only if the price of the underlying asset crosses a barrier. See also knock-in on page Glossary-6 and knock-out on page Glossary-6. If the option fails to execute, the seller may pay to the purchaser a predetermined rebate on page Glossary-8.

## barrier option

An option that is activated or deactivated only if the price of the underlying asset crosses a barrier. See also knock-in on page Glossary-6 and knock-out on page Glossary-6. If the option fails to execute, the seller may pay to the purchaser a predetermined rebate on page Glossary-8.

## basket option

An option that provides a payoff dependent on the value of a portfolio of assets.

## beta

The price volatility of a financial instrument relative to the price volatility of a market or index as a whole. Beta is most commonly used
with respect to equities. A high-beta instrument is riskier than a low-beta instrument.

## binomial model

A method in which the probability over time of each possible price or rate follows a binomial distribution. The basic assumption is that prices or rates can move to only two values (one higher and one lower) over any short time period. See also trinomial model on page Glossary-10.

## Black-Derman-Toy (BDT) model

A model for pricing interest rate derivatives where all security prices and rates depend upon the short rate (annualized one-period interest rate).

## bond

A long-term debt security with fixed interest payments and fixed maturity date.

## bond option

The right to sell a bond back to the issuer (put) or to redeem a bond from its current owner (call) at a specific price and on a specific date.

## bushy tree

A tree of prices or interest rates in which the number of branches increases exponentially relative to observation times; branches never recombine. Opposite of a recombining tree on page Glossary- 8 .
call

1. An option to buy a certain quantity of a stock or commodity for a specified price within a specified time. See also put on page Glossary-7.
2. A demand to submit bonds to the issuer for redemption before the maturity date.

## call swaption

Allows the option buyer to enter into an interest rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.

## callable bond

A bond that allows the issuer to buy back the bond at a predetermined price at specified future dates. The bond contains an embedded call option; that is, the holder has sold a call option to the issuer. See also puttable bond on page Glossary-8.

## cap

Interest-rate option that guarantees that the rate on a floating-rate loan will not exceed a certain level.

## caplet

An interim cap component in a multiperiod interest-rate cap agreement.

## cash-or-nothing option

A digital option that pays some fixed amount of cash if the option expires in the money.

## compound option

An option on an option, such as a call on a call, a put on a put, a call on a put, or a put on a call.

## delta

The rate of change of the price of a derivative security relative to the price of the underlying asset; that is, the first derivative of the curve that relates the price of the derivative to the price of the underlying security.

## derivative

A financial instrument that is based on some underlying asset. For example, an option is a derivative instrument based on the right to buy or sell an underlying instrument.

## deterministic model

An interest rate model in which the values of the rates in the next time step are determined solely by the values of the rates in the current time step.

## digital option

An option whose payout is fixed after the underlying stock exceeds the predetermined threshold or strike price.

## discount factor

Coefficient used to compute the present value of future cash flows.

## dollar sensitivity

Sensitivity reported as a dollar price change instead of a percentage price change.

## down-and-in

A type of barrier option on page Glossary-1 that becomes active if the barrier is reached from above. See also knock-in on page Glossary-6.

## down-and-out

A type of barrier option on page Glossary- 1 that becomes deactivated if the barrier is reached from above. See also knock-out on page Glossary-6.

## European option

An option that can be exercised only on its expiration date. Contrast with American option on page Glossary-1.

## ex-dividend date

Date when a declared dividend belongs to the seller rather than the buyer.

## exercise price

The price set for buying an asset (call) or selling an asset (put). The strike price.

## exotic option

Any nonstandard option. Opposite of vanilla option on page Glossary-10.

## fixed lookback option

Strike price is fixed at purchase. The underlying is priced at its highest or lowest level, depending whether it is a call or put, during the life of the option rather than expiring at market.

## fixed-rate note

A long-term debt security with preset interest rate and maturity, by which the interest must be paid. The principal may or may not be paid at maturity.

## floating lookback option

Strike price is fixed at maturity. For a call, the price is fixed at the lowest price during the life of the option; for a put it is fixed at the highest price.

## floating-rate note

A security similar to a bond, but in which the note's interest rate is reset periodically, relative to a reference index rate, to reflect fluctuations in market interest rates.

## floor

Interest-rate option that guarantees that the rate on a floating-rate loan will not fall below a certain level.

## floorlet

One of the interim period floors in a multiple period floor agreement.

## forward curve

The curve of forward interest rates vs. maturity dates for bonds.

## forward rate

The future interest rate of a bond inferred from the term structure, especially from the yield curve of zero-coupon bonds, calculated from the growth factor of an investment in a zero held until maturity.

## gamma

The rate of change of delta for a derivative security relative to the price of the underlying asset; that is, the second derivative of the option price relative to the security price.

## gap option

A digital option in which one strike decides if the option is in or out of money and another strike decides the size the size of the payoff.

## Heath-Jarrow-Morton (HJM) model

A model of the interest rate term structure that works with a type of interest rate tree called a bushy tree on page Glossary-2.

## hedge

A securities transaction that reduces or offsets the risk on an existing investment position.

## instrument set

A collection of financial assets. A portfolio.

## inverse discount

A factor by which the present value of an asset is multiplied to find its future value. The reciprocal of the discount factor.

## irregular coupon

A bond interest payment for more or less than six-months' interest. The first coupon on many bonds is irregular because payment is other than six months from the dated date.

## knock-in

A barrier option on page Glossary- 1 that is activated when the price of the underlying asset achieves a designated target. There are two types: up-and-in on page Glossary-10 and down-and-in on page Glossary-4.

## knock-out

A barrier option on page Glossary-1 that is deactivated when the price of the underlying asset achieves a designated target. There are two types: up-and-out on page Glossary-10and down-and-out on page Glossary-4.

## least squares method

A mathematical method of determining the best fit of a curve to a series of observations by choosing the curve that minimizes the sum of the squares of all deviations from the curve.

## long rate

The yield on a zero-coupon Treasury bond.

## lookback option

An option that reduces uncertainties associated with the timing of market entry. Lookback options can be either fixed lookback option on page Glossary-4 and floating lookback option on page Glossary-5.

## mean reversion

The tendency of a variable to return to its mean value after reaching a point of excessive positive or negative valuation relative to the mean.

## option

A right to buy or sell specific securities or commodities at a stated price (exercise or strike price) within a specified time. An option is a type of derivative.

## per-dollar sensitivity

The dollar sensitivity on page Glossary-8 divided by the corresponding instrument price.

## portfolio

A collection of financial assets. Also called an instrument set.

## price tree structure

A MATLAB structure that holds all pricing information.

## price vector

A vector of instrument prices.
pricing options structure
A MATLAB structure that defines how the price tree is used to find the price of instruments in the portfolio, and how much additional information is displayed in the command window when the pricing function is called.

## put

An option to sell a stipulated amount of stock or securities within a specified time and at a fixed exercise price. See also call on page Glossary-2.

## put swaption

Allows the option buyer to enter into an interest rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.

## puttable bond

A bond that allows the holder to redeem the bond at a predetermined price at specified future dates. The bond contains an embedded put option; that is, the holder has bought a put option. See also callable bond on page Glossary-3.

## rainbow option

A single option linked to two or more underlying assets. In order for the option to pay off, all the underlying assets must move in the intended direction.

## rate specification

A MATLAB structure that holds all information needed to identify completely the evolution of interest rates.

## rebate

A predetermined amount of money paid to the purchaser of a barrier option on page Glossary- 1 if the option fails to execute.

## recombining tree

A tree of prices or interest rates whose branches recombine over time. Opposite of a bushy tree on page Glossary-2.

## self-financing hedge

A trading strategy whereby the value of a portfolio after rebalancing is equal to its value at any previous time.

## sensitivity

The "what if" relationship between variables; the degree to which changes in one variable cause changes in another variable. A specific synonym is volatility. See also dollar sensitivity on page Glossary-4.

## short rate

The annualized one-period interest rate.

## spot curve, spot yield curve

See zero curve, zero-coupon yield curve on page Glossary-11.

## spot rate

The current interest rate appropriate for discounting a cash flow of some given maturity.

## spread

For options, a combination of call or put options on the same stock with differing exercise prices or maturity dates.

## stochastic model

Involving or containing a random variable or variables; involving chance or probability.

## strike

Exercise a put or call option.

## strike price

See exercise price on page Glossary-4.

## supershare option

A digital option that pays out a proportion of the assets underlying a portfolio if the asset lies between a lower and an upper bound at the expiry of the option.

## swap

A contract between two parties to exchange cash flows in the future according to some formula.

## swaption

An option on an interest rate swap. It grants the option buyer the right to enter into an interest rate swap at a future date.

## time specification

A MATLAB structure that represents the mapping between times and dates for interest rate quoting.

## trinomial model

A method in which the basic assumption is that prices or rates can move to one of three possible values over any short time period. At any time step the price or rate direction can be upward, neutral, or downward. See also binomial model on page Glossary-2.

## under-determined system

A set of simultaneous equations in which the number of independent variables exceeds the number of equations in the set, leading to an infinite number of solutions.

## up-and-in

A type of barrier option on page Glossary- 1 that becomes active if the barrier is reached from below. See also knock-in on page Glossary-6.

## up-and-out

A type of barrier option on page Glossary- 1 that becomes deactivated if the barrier is reached from below. See also knock-out on page Glossary-6.

## vanilla option

A common option, such as a put or call. Opposite of exotic option on page Glossary-4.

## vanilla swap

A swap on page Glossary-9 agreement to exchange a fixed rate for a floating rate.

## vega

The rate of change in the price of a derivative security relative to the volatility of the underlying security. When vega is large, the security is sensitive to small changes in volatility.

## volatility specification

A MATLAB structure that specifies the forward rate volatility process.

## yields

The zero coupon rate.

## yield curve

The zero curve.

## yield volatility

The zero coupon volatilities.

## zero curve, zero-coupon yield curve

A yield curve for zero-coupon bonds; zero rates versus maturity dates. Since the maturity and duration (Macaulay duration) are identical for zeros, the zero curve is a pure depiction of supply/demand conditions for loanable funds across a continuum of durations and maturities. Also known as spot curve or spot yield curve.

## zero-coupon bond, or zero

A bond that, instead of carrying a coupon, is sold at a discount from its face value, pays no interest during its life, and pays the principal only at maturity.

## A

arbitrary cash flow instruments 2-3
Asian option
defined 3-22
Asian options
fixed and floating strike, by CRR 6-3
fixed and floating strike, by EQP 6-6
fixed and floating strike, by ITT 6-9
asianbycrr 6-2
asianbyeqp 6-5
asianbyitt 6-8
assetbybls 6-11
assetsensbybls 6-13
average price options
by CRR 6-3
by EQP 6-6
by ITT 6-9
average strike options
by CRR 6-3
by EQP 6-6
by ITT 6-9

## B

bank format 4-4
barrier option
defined 3-23
types of 3-23
barrierbycrr 6-17
barrierbyeqp 6-20
barrierbyitt 6-23
Basket option
defined 3-25
basketbyju 6-26
basketbyls 6-30
basketsensbyju 6-35
basketsensbyls 6-39
basketstockspec 6-45
BDT model 2-4
bdtprice 6-50
bdtsens 6-54
bdttimespec 6-57
bdttree 6-59
input arguments 2-30
bdtvolspec 6-61
forms of volatility 2-31
Bermuda option
bond 2-2
stock 3-30
binomial trees 2-5
BK model 2-4
bkprice 6-63
bksens 6-67
bktimespec 6-70
bktree 6-72
bkvolspec 6-75
Black-Derman-Toy (BDT) model 2-29
Black-Derman-Toy tree 2-56
Black-Karasinski (BK) model 2-30
bond
defined 2-2
bond with embedded options
defined 2-3
bondbybdt 6-77
bondbybk 6-81
bondbyhjm 6-85
bondbyhw 6-89
bondbyzero 6-93
bushpath 6-97
example 2-48
bushshape 6-99
bushy trees 2-5

## C

calibrating HW model
using market data 2-36
cap, defined 2-3
capbybdt 6-102
capbybk 6-106
capbyblk 6-109
capbyhjm 6-112
capbyhw 6-115
cashbybls 6-118
cashsensbybls 6-120
cfbybdt 6-124
cfbybk 6-128
cfbyhjm 6-132
cfbyhw 6-136
cfbyzero 6-140
chooserbybls 6-143
classfin 6-145
closed-form solutions
types of 3-49
compound option
defined 3-26
compoundbyeqp 6-150
compoundbyitt 6-153
computing prices and sensitivities
Bjerksund-Stensland model 3-57
Black model 3-55
Black-Scholes model 3-53
Roll-Geske-Whaley model 3-56
constraints 4-24
dependent 4-24
inconsistent 4-27
constructor 1-9
convbyzero 6-172
coupoundbycrr 6-147
CRR and EQP
differences 3-20
CRR model description 3-2
crrprice 6-156
crrsens 6-159
crrtimespec 6-162
crrtree 6-164
cvtree 6-168

## D

date2time 6-172
datedisp 6-175
delta 2-27
defined 4-3
dependent constraints 4-24
deriv.mat 2-6
derivget 6-177
derivset 6-179
deterministic model 2-24
differences between CRR and EQP 3-20
digital option
defined 3-28
types of $3-28$
disc2rate 6-182
purpose 2-9
syntax 2-13
discount factors 2-9
discrete time models 3-2
dollar sensitivities
from interest-rate models 2-64
from interest-rate term structure 2-27
from stock trees 3 -43

## E

EQP model description 3-2
eqpprice 6-186
eqpsens 6-189
eqptimespec 6-192
eqptree 6-194
equity binary trees
building 3-3
equity exotic options
types 3-31
types of 3-22

## F

field 1-10
fixed lookback options 3-27
fixed-rate note, defined 2-3
fixedbybdt 6-198
fixedbybk 6-201
fixedbyhjm 6-204
fixedbyhw 6-207
fixedbyzero 6-210
floatbybdt 6-213
floatbybk 6-216
floatbyhjm 6-219
floatbyhw 6-222
floatbyzero 6-225
floating lookback option 3-27
floating-rate note, defined 2-3
floor, defined 2-3
floorbybdt 6-228
floorbybk 6-232
floorbyblk 6-235
floorbyhjm 6-238
floorbyhw 6-241

## G

gamma 2-27
defined 4-3
gapbybls 6-244
gapsensbybls 6-246

## H

Heath-Jarrow-Morton (HJM) model 2-29
Heath-Jarrow-Morton tree 2-56
hedgeopt 6-250
purpose 4-3
hedgeslf 6-254
purpose 4-3
hedging
considerations 4-2
functions 4-3
goals 4-3

HJM model
described 2-4
HJM pricing options structure A-2
hjmprice 6-258
hjmsens 6-262
hjmtimespec 6-265
hjmtree 6-267
input arguments 2-30
HJMTree 2-56
hjmvolspec 6-269
forms of volatility 2-31
Hull-White (HW) model 2-29
HW model 2-4
hwcalbycap 6-273
hwcalbyfloor 6-277
hwprice 6-281
hwsens 6-285
hwtimespec 6-288
hwtree 6-290
hwvolspec 6-293

## I

implied trinomial trees
building 3-8
impvbybjs 6-295
impvbyblk 6-298
impvbybls 6-301
impvbyrgw 6-304
inconsistent constraints 4-27
instadd 6-306
creating an instrument 1-5
instaddfield 6-309
creating new instruments 1-10
instasian 6-313
instbarrier 6-316
instbond 6-318
instcap 6-322
instcf 6-324
instcompound 6-326
instdelete 6-329
instdisp 6-332
instfields 6-334
instfind 6-337
purpose 1-12
syntax 1-13
instfixed 6-340
instfloat 6-343
instfloor 6-346
instget 6-348
instgetcell 6-353
instlength 6-358
instlookback 6-359
instoptbnd 6-361
instoptembnd 6-364
instoptstock 6-369
instrument
creating 1-10
instrument constructor 1-9
instrument index 1-12
instselect 6-372
purpose 1-12
instsetfield 6-375
instswap 6-379
instswaption 6-383
insttypes 6-388
intenvget 6-390
purpose 2-21
intenvprice 6-392
intenvsens 6-394
intenvset 6-397
purpose 2-19
interest rate derivatives
using Black option pricing model 2-67
interest rate term structure, defined 2-9
inverse discount 2-45
isafin 6-402
ITT model description 3-3
ittprice 6-403
ittsens 6-406
itttimespec 6-410
itttree 6-411

## $L$

least squares problem 4-21
lookback option
defined 3-27
types of 3-27
lookbackbycrr 6-418
lookbackbyeqp 6-421
lookbackbyitt 6-424

## M

maxassetbystulz 6-427
maxassetsensbystulz 6-430
minassetbystulz 6-435
minassetsensbystulz 6-438
mkbush 6-442
mktree 6-444
mktrintree 6-445
mmktbybdt 6-446
mmktbyhjm 6-448
model
Black-Derman-Toy (BDT) 2-29
Black-Karasinski (BK) 2-30
Cox-Ross-Rubinstein (CRR) 3-2
Equal Probabilities (EQP) 3-2
Heath-Jarrow-Morton (HJM) 2-29
Hull-White (HJW) 2-29
Implied Trinomial Tree (ITT) 3-3
multifactor volatility models 2-32

## 0

object 1-9
observation time zero 2-61
optbnbybk 6-455
optbnbyhw 6-466
optbndbybdt 6-450
optbndbyhjm 6-461
optembndbybdt 6-472
optembndbybk 6-478
optembndbyhjm 6-484
optembndbyhw 6-490
Options argument
input to pricing functions 2-56
optstockbybjs 6-496
optstockbyblk 6-498
optstockbybls 6-500
optstockbycrr 6-503
optstockbyeqp 6-506
optstockbyitt 6-509
optstockbyrgw 6-512
optstocksensbybjs 6-514
optstocksensbyblk 6-518
optstocksensbybls 6-521
optstocksensbyrgw 6-525

## P

per-dollar sensitivities
calculating 2-66
example 2-28
portfolio 1-5
creation 1-5
management 1-9
portfolio pricing functions
equity derivatives $3-31$
interest-rate based 2-55
price tree structure 2-62
Price vector
BDT 2-64
HJM 2-61
pricing options
default structure A-2
structure A-2

## R

rainbow option
defined 3-29
types of 3-29
rate specification $2-9$
rate2disc 6-528
creating inverse discounts 2-46
purpose 2-9
RateSpec
creation of 2-32
defined 2-9
using with HJM 2-35
ratetimes 6-533
purpose 2-9
rebate 3-24
recombining trees $2-5$
root node 6-608

## S

sensitivity
per-dollar, viewing 2-66
types of 2-27
sensitivity functions 2-64
short rate 2-4
specific-instrument pricing functions 2-56
stochastic model 2-24
stock structure 3-4 3-9
stockoptspec 6-537
StockOptSpec
for stock trees 3-12
stockspec 6-541
supersharebybls 6-545
supersharesensbybls 6-547
swap, defined 2-3
swapbybdt 6-551
swapbybk 6-556
swapbyhjm 6-561
swapbyhw 6-568
swapbyzero 6-573
swaption, defined 2-3
swaptionbybdt 6-577
swaptionbybk 6-582
swaptionbyhjm 6-587 6-592

## T

time2date 6-597
TimeSpec
defined 2-32
for stock trees 3-5 3-11
using 2-41
treepath 6-601
trees
binomial 2-5
bushy $2-5$
recombining $2-5$
trinomial 2-5
treeshape 6-603
treeviewer 6-605
displaying BDT trees 6-614
displaying HJM trees 6-609
examining values with $2-68$
purpose 2-6
with recombining trees 2-71
trinomial trees 2-5
trintreepath 6-622
trintreeshape 6-624
TypeString argument 1-5

## U

under-determined system 4-23

## V

vanilla swaps 2-3
vega, defined 4-3
volatility
process 2-32
VolSpec
BDT 2-34
calling syntax 2-31
HJM 2-31
using 2-32


[^0]:    References Nengjiu Ju, "Pricing Asian and Basket Options Via Taylor Expansion", Journal of Computational Finance, Vol. 5, 2002.

    See Also basketstockspec | basketsensbyju
    How To . "Basket Option" on page 3-25

[^1]:    Description [Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike,ExerciseDates, Spread, Settle, Maturity,'Name1', Value1, 'Name2', Value2) computes the price of a swaption from a BDT interest-rate tree. The swaption may be a call swaption or a put swaption.

[^2]:    Description
    [Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity,'Name1', Value1, 'Name2', Value2) computes the price of a swaption from a HJM interest-rate tree.

